
QoS Handling with DVFS
(CPUfreq & Devfreq)

MyungJoo Ham
SW Center, Samsung Electronics

Samsung Electronics1

Performance Issues of DVFS

• Performance Sucks w/ DVFS!
• Battery-life Still Matters

• More Devices (components) w/ DVFS

 More Performance Issues

Samsung Electronics2

Topics
 Introduction
 DVFS (Dynamic Voltage & Frequency Scaling)
 QoS (Quality of Service)

 The Issues & Solutions
 QoS on DVFS devices
 QoS on DVFS mechanisms

 Conclusion
 Preliminary Experimental Results

Samsung Electronics3

Introduction

• DVFS

• QoS

• Terms

Issues & Solutions

Conclusion

Samsung Electronics4

OPP
OPP Spec

Linux Kernel Power Management
Linux 3.4

Hardware

Clock Regulator
Regulator Drv

Suspend Runtime-PMCPUidle p g
CPU

Hotplug

Linux Driver Model

Device Driver

CPUfreq Drv

Power Domain

SoC/CPU Architecture Support

Thermal

SoC/CPU Architecture Support

Framework

Driver

• The frameworks are not hierarchical. Connections show typical usage.

Driver (arch)

CPUfreq Devfreq

PM-QoS

Samsung Electronics5

Intro: DVFS 1/2
 Dynamic Voltage and Frequency Scaling

 CPUfreq: DVFS for CPU Core
 Devfreq: DVFS for other devices
 Memory-Interface, Bus, GPU, …

Samsung Electronics6

Intro: DVFS 2/2
 Sampling the utilization, periodically
 Adjust frequency based on the utilization
 Adjust voltage based on frequency

U = Measure CPU Utilization

U > Th_Up

U < Th_Down

Wait for next sampling

No

No
Adjust Frequency & Voltage

Yes

Yes

Samsung Electronics7

Intro: QoS
 Linux PM-QoS Framework
 Global QoS Request

 “CPU-DMA-Latency”, “Network-Throughput”, “Network-Latency”

 Per-dev QoS Request
 “Device A”, “S5Pxxx.0”

 Manage QoS Requests for QoS Handlers
1. Thread A: DMA latency < 100us
2. Thread B: DMA latency < 15us
 PM-QoS tells DMA driver: “Do < 15us”

3. Thread B: Cancel the request
 PM-QoS tells DMA driver: “Do < 100us”

4. …

Samsung Electronics8

Intro: Terms
 DVFS Target
 A device w/ DVFS capability
 DVFS Target = CPU w/ CPUfreq

 DVFS Driver
 Device driver controlling DVFS mechanism of a DVFS target.
 (CPUfreq) DVFS Driver = “/drivers/cpufreq/exynos4x12-cpufreq.c”

Samsung Electronics9

Issues & Solutions

• QoS on DVFS Devices
• QoS on DVFS Mechanisms

Conclusion

Introduction

Samsung Electronics10

Performance Issues of DVFS: 1/3
 Issue 1: Too Late to React

t

Load

Util = 0%

Util = 60% Util = 99%.
React!

Samsung Electronics11

Performance Issues of DVFS: 2/3
 Issue 2: Cannot Detect Short Bursts

t

Load

Samsung Electronics12

Performance Issues of DVFS: 3/3
 Issue 3: Asymmetric Inter-device Dependency

 DMA op latency/throughput depends on CPU frequency.
 Activity on DMA doesn’t affect CPU load.

CPU Cores

Bus

Memory

DMA Devices
(GPU, Display, Codec HW, …)

CPUfreq
Affects Bus/Mem Speed

DMA Activity
Cannot affect
CPUfreq

X DMA Activity

Samsung Electronics13

Issues & Solutions

• Performance Issues of DVFS

• QoS on DVFS Mechanisms

Conclusion

Introduction

Samsung Electronics14

The Possible Solution
 QoS handling at DVFS devices

 Let DVFS frameworks (CPUfreq/Devfreq) handle
not, each DVFS drivers.

 Based on the table given by DVFS drivers
 E.g., Bus frequency DMA Throughput

100MHz 640MB/s

133MHz 851MB/s

266MHz 1702MB/s

400Mhz 2560MB/s

Samsung Electronics15

QoS on DVFS Devices (DVFS f/w)
 Add the following information (devfreq driver) at probe
 QoS-related info for Devfreq driver (/include/linux/devfreq.h)

 struct devfreq_pm_qos_table {

 unsigned long freq; /* 0 if this is the last element */

 s32 qos_value;

 };

 struct devfreq_dev_profile {

 ……

 /* Optional QoS Handling Specification */

 int qos_type; /* Global QoS Requests */

 bool qos_use_max; /* Throughput-like? Or Latency-like? */

 bool enable_dev_pm_qos; /* Per-dev QoS Requests */

 struct devfreq_pm_qos_table *qos_list;

 };

Samsung Electronics16

QoS on DVFS Devices (DVFS f/w): Works!
 Issue1, “Touchscreen Event”
 User touch event  QoS request “at least 1000 BogoMIPs”

 CPUfreq runs CPU at 1GHz
 Reacting in ~100us (almost same w/ Issue 2)

 Issue 3, “Video Decoding”
 Video decoder gets a 1080p60Hz job

 QoS request “DMA throughput of 2.4GB/s”
 CPUfreq runs CPU at 500MHz

 No performance issues

Samsung Electronics17

OPP
OPP Spec

Handling QoS Requests: Design-Before

Hardware

Clock Regulator
Regulator Drv

CPUfreq Suspend Runtime-PMDevfreqCPUidle p g
CPU

Hotplug

Linux Driver Model

Device Driver

CPUfreq Drv

Power Domain

SoC/CPU Architecture Support

Thermal

SoC/CPU Architecture Support

PM-QoS

Framework

Driver

• The frameworks are not hierarchical. Connections show typical usage.

Driver (arch)

Aggregates QoS Requests.

No considerations for DVFS

Samsung Electronics18

OPP
OPP Spec

Handling QoS Requests: Design-After

Hardware

Clock Regulator
Regulator Drv

CPUfreq Suspend Runtime-PMDevfreqCPUidle p g
CPU

Hotplug

Linux Driver Model

Device Driver

CPUfreq Drv

Power Domain

SoC/CPU Architecture Support

SoC/CPU Architecture Support

PM-QoS

Framework

Driver

• The frameworks are not hierarchical. Connections show typical usage.

Driver (arch)

Devfreq Driver

QoS Spec

QoS Spec

Adding QoS Spec (List of {freq, QoS-Value})
enables QoS handling at DVFS frameworks

Adding QoS Spec (List of {freq, QoS-Value})
enables QoS handling at DVFS frameworks

QoS-aware DVFS f/wQoS-aware DVFS f/w

Samsung Electronics19

Handling QoS Requests: How it Works
QoS
Requester 1

QoS
Requester 2

PM-QoS
Framework

DVFS
Framework

DVFS
Driver (bus)

DMA throughput
> 1GB/s

DMA throughput
> 1.5GB/s

DMA throughput
> 1GB/s

DMA throughput
> 1.5GB/s

Set Bus 266MHz

266MHz is enough.
No changes in bus-min

Set Bus 400MHz

DVFS f/w sets bus-min = 266

DVFS thinks bus needs 400MHz

DVFS thinks bus needs 133MHz
But QoS constraints at 266MHz Set Bus 266MHz

DMA throughput
> 0.5GB/s

1.5 > 0.5. Don’t talk to DVFS f/w

DMA throughput
> 0GB/s (don’t care) DMA throughput

> 0.5GB/s

DVFS f/w sets bus-min = 166

Set Bus 166MHz

Samsung Electronics20

Handling QoS Requests: Status
 New Global QoS Metrics Required
 DMA-Throughput: use kbytes/sec?
 GPU Performance: ???
 CPU Performance: ??? (BogoMIPS?? MIPS?? Clock?? …)

 QoS-Extension for CPUfreq
 Work-to-do: Handling global QoS (after we get the metric)

 QoS-Extension for Devfreq
 Done: Handling global QoS and per-dev QoS
 In-progress: test & evaluation

 3.5/3.6 Materials?

Samsung Electronics21

Issues & Solutions

• Performance Issues of DVFS

• QoS on DVFS Devices

Conclusion

Introduction

Samsung Electronics22

DVFS Response Latency: Motivation
 Reviving the “Issue 1”
 Responding to user inputs (e.g., mobile phone touchscreen)

 Case 1
 Launching an app / Menuscreen flipping

 Requires high performance. (Nearly full)

 Case 2
 Typing a TXT / Email

 Requires low-mid performance. (Often lowest)

 QoS requests upon inputs  Unconditional performance increase.
 Case 2 wastes power!

 Do NOT increase performance unconditionally!
 Decide faster, not acting blindly.

 Control DVFS behavior!

Samsung Electronics23

DVFS Response Latency: Design
 Request faster reaction from DVFS mechanism.

t

Load An Event An Event

t

Load
An Event An Event

DVFS Sampling

Samsung Electronics24

DVFS Response Latency: Design
 Request faster reaction from DVFS mechanism.
 “Quality-of-DVFS-Service”!

 Add “DVFS_RESPONSE_LATENCY” QoS Class!
 CPUfre/Devfreq controls sampling rate upon requests

DVFS Sampling

DVFS Sampling
Increasing Freq.

t

Load An Event An Event

t

Load
An Event An Event

Reaction Reaction

Reaction

No Reaction

Samsung Electronics25

OPP
OPP Spec

DVFS Response Latency: Design

Hardware

Clock Regulator
Regulator Drv

CPUfreq Suspend Runtime-PMDevfreqCPUidle p g
CPU

Hotplug

Linux Driver Model

Device Driver

CPUfreq Drv

Power Domain

SoC/CPU Architecture Support

SoC/CPU Architecture Support

PM-QoS

Framework

Driver

• The frameworks are not hierarchical. Connections show typical usage.

Driver (arch)

Devfreq Driver

QoS-aware DVFS f/w

Response Latency Self-aware
DVFS f/w (daemon)

Samsung Electronics26

DVFS Response Latency:(DVFS f/w)
 Add the following information (devfreq driver) at probe
 QoS-related info for Devfreq driver (/include/linux/devfreq.h)

 struct devfreq_dev_profile {

 ……

 /* Optional DVFS-Response-Latency QoS Handling Specification */

 bool support_dvfs_latency; /* Enable the feature */

 };

 The Devfreq f/w will update sampling rate accordingly

Samsung Electronics27

DVFS Response Latency: (DVFS f/w)
 The worst-case response latency
 With sustained full-load.

 � (100%)  

 L Response Latency
 Th Up-Threshold
 R Sampling Rate

 Devfreq f/w sets sampling rate based on this.

Samsung Electronics28

DVFS Response Latency: Status
 Used in some product kernels.
 Trying to upstream
 QoS (global)

 Metric: “DVFS_RESPONSE_LATENCY” in us?
 For DVFS drivers registered.
 (?) Different “classes” of DVFS drivers???

 CPUfreq
 Done: Instant reaction patch
 Work-to-do: redo response-latency after the metric is concluded.

 Devfreq
 Done: patchset
 In-progress: test & evaluation

Samsung Electronics29

Conclusion

Introduction

Issues & Solutions

Samsung Electronics30

Conclusion – Future Work 1/3
 What’s Next – 1
 Test & Evaluation

 QoS Handling in Devfreq
 DVFS-Response-Latency Handling in Devfreq & CPUfreq

 Development
 QoS Handling in CPUfreq

 QoS Metrics
 DVFS-Response-Latency?
 DMA Throughput
 GPU???

Samsung Electronics31

Conclusion – Future Work 2/3
 What’s Next – 2
 Thermal-aware DVFS

 Integrating w/ Thermal f/w
 DVFS driver = Thermal cooler device

 Scheduler-aware DVFS
 Turbo Boost*-like Support
 Adjust MAX freq according to # cores activated

 # Threads  # Cores activated

* Trademark of Intel Samsung Electronics32

Conclusion – Future Work 3/3
 Future Work (farther…)
 (Many) Multi/Hetero-core DVFS Support

 Scheduler support might kick in.
 ARM Cortex A15 Big-Little model is the starting point.

 Compiler/Algorithm support for DVFS mechanisms
 Had some approaches, but not efficient enough (yet)

Samsung Electronics33

Thank you!

Samsung Electronics34

Appendix

Samsung Electronics35

Appendix: Links to Related Code
 Devfreq
 Linux 3.4 rc7 Tovalds’

 Header / Core / Default-Governor (Daemon)

 Devfreq/CPUfreq/PM-QoS for Linux 3.5/3.6
 PM / devfreq: handling QoS reqest on DVFS response latency (work-in-progress)

 PM / devfreq: support per-dev PM-QoS in devfreq (not sent)

 CPUfreq ondemand: handle QoS request on DVFS response... (pending)

 CPUfreq ondemand: update sampling rate without waiting... (accepted)

 PM / QoS: add pm_qos_update_request_timeout API (accepted)

 PM / QoS: Introduce new classes: DMA-Throughput and... (pending)

 PM / devfreq: add relation of recommended frequency. (accepted)

 PM / devfreq: add PM QoS support (pending)

Samsung Electronics36

