
PAGE 1 Open Source Open Possibilities

Open Source Open Possibilities

Compiling Linux with
LLVM

Presented by: Mark Charlebois
Presentation Date: 06/07/2012

PAGE 2 Open Source Open Possibilities

Agenda

Why would I want to use Clang to compile Linux?
Status updates:

cross compiling for ARM with Clang

building Linux kernel with Clang

running Linux compiled with Clang

To do list

PAGE 3 Open Source Open PossibilitiesPAGE 3

Open Source Open Possibilities

Why Would I Want to Use
Clang to Compile Linux?

PAGE 4 Open Source Open Possibilities

Better Diagnostics
$ gcc-4.2 -fsyntax-only t.c
t.c:7: error: invalid operands to binary + (have 'int' and 'struct A')

$ clang -fsyntax-only t.c
t.c:7:39: error: invalid operands to binary expression ('int' and 'struct A')
return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
                     ~~~~~~~~~~~~~~ ^ ~~~~~
See http://clang.llvm.org/diagnostics.html for more examples

GCC extensions: all extensions are explicitly recognized as such and marked with 
extension diagnostics, which can be mapped to warnings, errors, or just ignored.

Google builds their products also with Clang just for the better debug output

Rich diagnostic output enables auto-generation of patches

http://clang.llvm.org/diagnostics.html
http://clang.llvm.org/diagnostics.html


PAGE  5 Open Source   Open Possibilities

Fix-it Hints

"Fix-it" hints provide advice for fixing small, localized problems in source code. 

$ clang t.c 
t.c:5:28: warning: use of GNU old-style field designator extension struct point 
origin = { x: 0.0, y: 0.0 }; 
           ~~ ^ 
           .x = 
t.c:5:36: warning: use of GNU old-style field designator extension struct point 
origin = { x: 0.0, y: 0.0 }; 
                   ~~ ^ 
                   .y = 



PAGE  6 Open Source   Open Possibilities

Macro Expansion
$ gcc-4.2 -fsyntax-only t.c 
t.c: In function 'test': 
t.c:80: error: invalid operands to binary < (have 'struct mystruct' and 
'float') 

$ clang -fsyntax-only t.c 
t.c:80:3: error: invalid operands to binary expression ('typeof(P)' (aka 
'struct mystruct') and 'typeof(F)' (aka 'float'))
 X = MYMAX(P, F); 
     ^~~~~~~~~~~ 
t.c:76:94: note: instantiated from: 
#define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b 
= (B); __a < __b ? __b : __a; }) 
     ~~~ ^ ~~~


PAGE 7 Open Source Open Possibilities

Static Analyzer
http://littlechina.org/~vcgomes/bluez-static-analysis/2012-02-10-1/report-n7KJtW.html#EndPath

PAGE 8 Open Source Open Possibilities

Clang/LLVM use in Open Source OSes

Minix moved to Clang as default compiler
http://wiki.minix3.org/en/MinixReleases

FreeBSD is working on ClangBSD
Using LLVM and KLEE for automatic test generation

http://wiki.freebsd.org/BuildingFreeBSDWithClang

LLVM is the basis of the Renderscript compiler in Android
Supported on ARM, MIPS and x86

LLVM a hard dependancy for Gallium3D
llvm-pipe driver

Clover – OpenCL state tracker

May be used for GLSL shader optimizer

http://wiki.minix3.org/en/MinixReleases
http://wiki.minix3.org/en/MinixReleases
http://wiki.freebsd.org/BuildingFreeBSDWithClang
http://wiki.freebsd.org/BuildingFreeBSDWithClang

PAGE 9 Open Source Open Possibilities

Clang and Debian

Building Debian with Clang:
“…most of the issues are either difference in C standard supported, difference
of interpretation or corner cases.”

“My personal opinion is that clang is now stable and good enough to rebuild
most of the packages in the Debian archive, even if many of them will need
minor tweaks to compile properly.”

“In the next few years, coupled with better static analysis tools, clang might
replace gcc/g++ as the C/C++ compiler used by default in Linux and BSD
distributions.”

“The clang developers are progressing very fast: 14.5% of the packages were
failing with version 2.9 against 8.8% with version 3.0.”

Sylvestre Ledru: http://sylvestre.ledru.info/blog/sylvestre/2012/02/29/rebuild_of_the_debian_archive_with_clang

http://sylvestre.ledru.info/blog/sylvestre/2012/02/29/rebuild_of_the_debian_archive_with_clang

PAGE 10 Open Source Open PossibilitiesPAGE 10

Open Source Open Possibilities

Status of Cross Compiling
for ARM with Clang

PAGE 11 Open Source Open Possibilities

Clang Parameters for Building ARM Linux User Space

Getting much simpler now:

export COMPILER_PATH=/opt/arm-2011.03

CC=clang -ccc-host-triple arm-none-linux-gnueabi \

 -ccc-gcc-name arm-none-linux-gnueabi-gcc \

 --sysroot=${COMPILER_PATH}/arm-none-linux-gnueabi/libc \

 -march=armv7-a -mfpu=neon

The default for arm-none-linux-gnueabi is armv4t

Using triple armv7-none-linux-gnueabi will not find the codesourcery compiler and
default to the native assembler: /usr/bin/as

PAGE 12 Open Source Open Possibilities

Universal Driver - http://clang.llvm.org/UniversalDriver.html

User specifies just a “configuration”:
clang --config=arm-cortex-a9-baremetal foo.c

clang --config=cortex-m4-my-toaster morning-food.c

Under the hood this entry point (the universal driver) would have access to all the
information that the driver, compiler, and other tools need to build applications for
that target.

Status?

http://clang.llvm.org/UniversalDriver.html
http://clang.llvm.org/UniversalDriver.html

PAGE 13 Open Source Open Possibilities

ELLCC - http://ellcc.org/

The primary emphasis of the ELLCC project is to create an easy to use multi-target
cross compilation environment for embedded systems [based on Clang and LLVM].
Multi-target support: ARM, i386, Microblaze, Mips, Nios2[2], PowerPC, PowerPC64,
Sparc[1] and X86_64

http://ellcc.org/

PAGE 14 Open Source Open PossibilitiesPAGE 14

Open Source Open Possibilities

Challenges Using Clang to
Build Linux Kernel

PAGE 15 Open Source Open Possibilities

Challenges Using Clang for Cross Compilation

Cross compilation with Clang
Not a supported configuration

Dependence on GNU cross toolchain for assembly and linking

Configuring GNU toolchain dependencies

Finding the right triplet

Lots of warnings
Must set –Wno-unused-value (otherwise slows compilation)

Clang/LLVM Bugs

GCC Dependencies:
Clang C99 vs GCC GNU89

Kernel expects some undocumented GCC behavior

Unsupported GCC flags, builtin function behavior differences

PAGE 16 Open Source Open Possibilities

Unsupported GCC Behavior Expected by Linux Kernel

scripts/Kbuild.include are gcc specific
cc-option tests fail for gcc, pass erroneously for clang

Clang warning is for unused, not unsupported
No way to check supported options in Clang

http://clang.llvm.org/docs/DriverInternals.html#int_unused_warnings

cc-option = $(call try-run,\

 $(CC) $(KBUILD_CPPFLAGS) $(KBUILD_CFLAGS) $(1) -c -xc /dev/null -o "$$TMP",$(1),$(2))

GCC returns false for unsupported flag and issues warning:
cc1: error: unrecognized command line option "-fno-delete-pointer-checks“

Clang returns true for unused flag and issues warning:
clang: warning: argument unused during compilation: '-fno-delete-pointer-checks'

See LLVM/Clang bug 9701 – only helps with warnings, not flags

http://clang.llvm.org/docs/DriverInternals.html#int_unused_warnings
http://clang.llvm.org/docs/DriverInternals.html#int_unused_warnings
http://llvm.org/bugs/show_bug.cgi?id=9701

PAGE 17 Open Source Open Possibilities

Unsupported GCC Flags

-fconserve-stack
Attempt to minimize stack usage. The compiler will attempt to use less stack
space, even if that makes the program slower. This option implies setting the
large-stack-frame parameter to 100 and the large-stack-frame-growth parameter
to 400.

-fdelete-null-pointer-checks (Bug 9251)
Assume that programs cannot safely dereference null pointers, and that no code
or data element resides there. This enables simple constant folding optimizations
at all optimization levels. In addition, other optimization passes in GCC use this
flag to control global dataflow analyses that eliminate useless checks for null
pointers; these assume that if a pointer is checked after it has already been
dereferenced, it cannot be null.

-fno-inline-functions-called-once
Suppresses inlining of subprograms local to the unit and called once from within
it, which is enabled if -O1 is used.

http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Switches-for-gcc.html

http://llvm.org/bugs/show_bug.cgi?id=9251
http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/Switches-for-gcc.html

PAGE 18 Open Source Open Possibilities

Unsupported GCC C Language Extensions

Variable length arrays in structs (VLAIS)
A declaration like:

 void f (int i) {
 struct foo_t {
 char a[i];
 } foo;
 }

cannot be compiled in Clang, though declarations like:

 void f (int i) {
 char foo[i];
 }

are perfectly acceptable.

Used in the iptables code, the kernel hashing (HMAC) routines, gadget driver, and
possibly some other drivers

PAGE 19 Open Source Open Possibilities

Unsupported GCC C Language Extensions

Explicit register variables not supported
register unsigned long current_sp asm ("sp");

Nested functions
Only used in a thinkpad driver

Use of 'aligned' attribute in cast (Bug 11071)
Crypto/shash.c

Return len + (mask & ~(__alignof__(u8 __attribute__ ((aligned))) - 1));

 ^~~~~~~

GCC allows EXPORT_SYMBOL of inlined functions
Linux kernel bugs

Patches submitted upstream by Greg KH

http://llvm.org/bugs/show_bug.cgi?id=11071

PAGE 20 Open Source Open Possibilities

Incompatibilities with GCC

Warnings for unused return values
Thousands of instances in kernel, must use –Wno-unused-value

Re-enabled with W=1

Segment references
More __refdata, __initdata, __exitdata attributes required

Investigate differences in linking and segments

Inline syntax handling
GNU89

__builtin_constant_p() fails for Clang (Bug 4898)
Include/linux/rcupdate.h

http://llvm.org/bugs/show_bug.cgi?id=4898

PAGE 21 Open Source Open Possibilities

ARM Specific Clang/LLVM Bugs or Missing Features

-mabi-linux not properly supported on ARM (Bug 11326)
Causes incorrect structure member offsets

64 bit type parameter passing (Bug 11753)
Must use register pairs

Hack used at Linux Foundation site, no upstream fix

ARM paired register GNU inline assembly syntax
Hack used at Linux Foundation site, no upstream fix

Clang Integrated Assembler (IA) not enabled for ARM (incomplete)

http://llvm.org/bugs/show_bug.cgi?id=11326
http://llvm.org/bugs/show_bug.cgi?id=11753

PAGE 22 Open Source Open Possibilities

ARM Specific Clang Configuration Issues
Using triple arm-none-eabi, or triple arm-none-linux-gnueabi generates

undefined reference to __aeabi_*

Must define __aeabi_memset, and __aeabi_memcpy

Note: be careful with args for __aeabi_memset!!!

Compiler-rt will not cross compile for ARM

Using triple “arm” or “armv7” will build kernel, but:
arch/arm/kernel/unwind.c:

warning: Your compiler does not have EABI support.

warning: ARM unwind is known to compile only with EABI compilers.

warning: Change compiler or disable ARM_UNWIND option.

Non-EABI kernel hangs at boot

__kernel_size_t vs size_t and posix functions

PAGE 23 Open Source Open PossibilitiesPAGE 23

Open Source Open Possibilities

Status of Building Linux
Kernel With Clang

PAGE 24 Open Source Open Possibilities

Wiki and git Repository at llvm.linuxfoundation.org

Links to known LLVM bugs, organized by architecture, place to aggregate
information about building Linux with Clang

Automated Build Framework
Documented in Wiki

Git repository

Current support for:
» ARM Cortex A9 (Versatile Express)
» Qualcomm MSM

Easy to add new arch/platforms

Anyone welcome to participate, would especially like to see x86 and MIPS support

Patches organized by common, arch, subarch/board
Easy to add new architectures and platforms

PAGE 25 Open Source Open Possibilities

Automated Build Framework

Automated build to simplify fetching and building Clang, QEmu, and initrd
Automates fetching, patching and building the Linux kernel

Git repository of build scripts and patches
http://git.linuxfoundation.org/llvm-setup.git

Proper build dependencies for Clang, kernel, QEMU and initramfs

Patches organized as:

General

Arch specific

SoC family or board specific

Tracks which patches apply and which do not

Python tools for managing and maintaining patches

All build targets can be listed
Make list-targets

http://git.linuxfoundation.org/llvm-setup.git

PAGE 26 Open Source Open Possibilities

Common/Arch Independent Status

Only 2 required Clang/LLVM patches
Required for missing ARM functionality

One optional patch:
Error on unsupported warnings (GCC compatibility)

Linux Kernel patches for
Explicit register variables

VLAIS (not for IP tables yet)

Segment linkage differences

Additional __refdata needed for some drivers

return_address and extern inline in ftrace.h

__builtin_constant_p() workaround

GCC specific use of aligned attribute in cast

PAGE 27 Open Source Open Possibilities

IP Tables use of VLAIS

net/ipv4/netfilter/ip_tables.c
net/ipv4/netfilter/../../netfilter/xt_repldata.h

#define xt_alloc_initial_table(type, typ2) ({ \
 unsigned int hook_mask = info->valid_hooks; \
 unsigned int nhooks = hweight32(hook_mask); \
 unsigned int bytes = 0, hooknum = 0, i = 0; \
 struct { \
 struct type##_replace repl; \
 struct type##_standard entries[nhooks]; \
 struct type##_error term; \
 } *tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); \

/* Today's hack: quantum tunneling in structs
 'entries' and 'term' are never anywhere referenced by word in code. In fact, they
serve as the hanging-off data accessed through repl.data[]. */

PAGE 28 Open Source Open Possibilities

Status of Building the ARM Linux Kernel With Clang

ARM Versatile Express
Compiles (3.4 kernel)

Supports crypto, ext4, SD card, initramfs

Boots and runs multiple initramfs images, or SD card image under QEMU

Builtbot status at http://88.198.35.80:8765/waterfall

Qualcomm MSM
Compiles with Clang/LLVM patches

More __refdata fixes

Have not yet tested on HW

Clang IA not yet enabled for ARM by default

Tracing is not yet enabled

http://88.198.35.80:8765/waterfall

PAGE 29 Open Source Open Possibilities

Specific ARM Issues

Unsupported flags
-mlittle-endian

Everything assumes little-endian byte order

-mno-thumb-interwork

-mshort-load-bytes

Broken flags
-mabi=aapcs-linux

Creates struct member offset issues

Replace
register unsigned long current_sp asm ("sp");

asm ("mov %0, r13" : "=r" (current_sp));

PAGE 30 Open Source Open Possibilities

Unsupported ARM Flags

-mno-thumb-interwork

Generate code that supports calling between the ARM and Thumb instruction sets.
Without this option, on pre-v5 architectures, the two instruction sets cannot be
reliably used inside one program. The default is -mno-thumb-interwork, since
slightly larger code is generated when -mthumb-interwork is specified. In
AAPCS configurations this option is meaningless.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default for

all standard configurations

-mshort-load-bytes
deprecated alias for -malignment-traps.

-malignment-traps
This option is ignored when compiling for ARM architecture 4 or later, since these

processors have instructions to directly access half-word objects in memory.

http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

PAGE 31 Open Source Open Possibilities

TODO

Check status of other issues reported by Bryce Lelbach
-mregparm

-fcall-saved-reg

-pg and mcount

-fno-optimize-sibling-calls

Status of Clang IA (Integrated Assembler)
Test gadget driver and crypto VLAIS patches
Segment linkage differences
Inline differences
Try building LTP with LLVM and create virtual SD card FS
Fix cc-option issues and other GCC specific dependencies

PAGE 32 Open Source Open Possibilities

Call for Participation

Others are welcome to participate at the LLVM work at Linux Foundation
Wishlist:

Integrating the patches from lll-linux tree for x86/x86_64

X86 QEMU test target

MIPS support and QEMU test target

LTP integration

Unit tests for known LLVM Linux bugs

PAGE 33 Open Source Open PossibilitiesPAGE 33

Open Source Open Possibilities

Thank You

PAGE 34 Open Source Open Possibilities

Nothing in these materials is an offer to sell any of the components or devices referenced
herein. Certain components for use in the U.S. are available only through licensed suppliers.
Some components are not available for use in the U.S.

Disclaimer

	Slide 1
	Agenda
	Slide 3
	Better Diagnostics
	Fix-it Hints
	Macro Expansion
	Static Analyzer
	Clang/LLVM use in Open Source OSes
	Clang and Debian
	Slide 10
	Clang Parameters for Building ARM Linux User Space
	Universal Driver -
	ELLCC -
	Slide 14
	Challenges Using Clang for Cross Compilation
	Unsupported GCC Behavior Expected by Linux Kernel
	Unsupported GCC Flags
	Unsupported GCC C Language Extensions
	Unsupported GCC C Language Extensions
	Incompatibilities with GCC
	ARM Specific Clang/LLVM Bugs or Missing Features
	ARM Specific Clang Configuration Issues
	Slide 23
	Wiki and git Repository at llvm.linuxfoundation.org
	Automated Build Framework
	Common/Arch Independent Status
	IP Tables use of VLAIS
	Status of Building the ARM Linux Kernel With Clang
	Specific ARM Issues
	Unsupported ARM Flags

	TODO
	Call for Participation
	Slide 33
	Disclaimer

