
LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI1

Live block device operations in QEMU

Paolo Bonzini
Red Hat
Yokohama, June 2012

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI2

Outline

● What is QEMU?

● The QEMU block layer

● Live block operations

● Q&A

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI3

What is QEMU?

● “A FAST! processor emulator”

● Started by Fabrice Bellard as Linux-on-Linux
userspace emulation

● Later extended to support system emulation

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI4

QEMU supports multiple accelerators

● Two emulate the whole machine
● TCG (“Tiny Code Generator”) supports emulating any

instruction set
● KVM provides transparent acceleration of the native ISA

● Two emulate devices only
● Xen (can be fully-virtualized or paravirtualized)
● qtest (simple ASCII protocol for device unit testing)

● qemu-kvm could be merged completely in QEMU 1.2

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI5

Huge amount of shared code!

● Device backends
● Block device
● Character device
● Filesystem device
● Network interface
● Audio device
● UI backend

● Management interface

● Device models
● PCI/PCIe
● IDE/AHCI
● SCSI
● USB (1.1/2.0/3.0)
● virtio
● I2C
● ISA
● ...

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI6

The QEMU storage stack

● The formats:
● raw, qcow2, QED
● ... and many others

● The backends:
● Flat file
● Block device
● usermode iSCSI & NBD
● curl (HTTP etc.)
● Sheepdog, ceph

● The clients:
● Image manipulation tool

(qemu-img)
● NBD server (qemu-nbd)
● Debugging/unit-testing

tool (qemu-io)
● Guest storage devices

(floppy, CD-ROM, USB,
IDE, SCSI)

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI7

Block device operations

● Create snapshot: qemu-img create

● Rebase: qemu-img rebase

● Copy: cp, dd, qemu-img convert

● Serve as NBD: qemu-nbd

● Only possible when the VM is offline

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI8

The QEMU storage stack

● The formats:
● raw, qcow2, QED
● ... and many others

● The backends:
● Flat file
● Block device
● usermode iSCSI & NBD
● curl (HTTP etc.)
● Sheepdog, ceph

● The clients:
● Image manipulation tool

(qemu-img)
● NBD server (qemu-nbd)
● Debugging/unit-testing

tool (qemu-io)
● Guest storage devices

(floppy, CD-ROM, USB,
IDE, SCSI)

● QEMU live block
operations

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI9

Live block operations

● Should not interfere with VM operation
● Pauses must be minimized
● Errors must be recoverable

● Long-running operations must be asynchronous
● Asynchronous I/O runs outside the QEMU global lock
● Monitor commands allow polling and cancellation

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI10

Starting simple: live snapshots

● Some image formats support stacking image files with
copy-on-write

● Live snapshotting adds a new image to the stack

1. Flush all pending I/O from the guest

2. Create a new image file and open it

3. Set the current image as the backing file

4. Redirect guest I/O to new file
● Multiple snapshots can be part of a single transaction

Single blocking
operation

Last failure
point

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI11

Copy-on-read

● CoW backing files can be on remote storage

● Move data closer to the VM to avoid expensive access

● All reads from a cluster wait for it to be copied

sectors (addressing units)

...

clusters (allocation units)

read from backing file

write cluster

read from backing file

write cluster

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI12

Image streaming

● Collapse all the stack of images into the topmost one

● Just perform copy-on-read from the beginning to the
end of the file

● Unallocated areas in the backing file are skipped
● At the end, drop the backing file

● Lets you remove one or more images from the stack

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI13

Image migration

● Many use cases
● Oh no, this disk says it's about to fail!
● Consolidation
● Defragmentation

● Two phases
● Synchronization (copy everything)
● Steady state (copy what's changed)

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI14

Image migration: how

Active
Perform each operation
on both disks

 “I need to write this!”

Synchronous
Operations are completed
once they have reached
both disks

Passive
Track changes to the
source, reproduce them

 “Uh, someone wrote here...”

Asynchronous
Operations are completed
even before they reach the
destination

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI15

Image migration: how

● Active/synchronous
Simplest handling of host crashes
Least robust in case the migration target has problems

● Active/asynchronous
Requires storing all I/O operations

● Passive/asynchronous
Most robust, good performance
Tricky to guarantee correctness of host crashes

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI16

Image migration: how

Active
Perform each operation
on both disks

 “I need to write this!”

Synchronous
Operations are completed
once they have reached
both disks

Passive
Track changes to the
source, reproduce them

 “Uh, someone wrote here...”

Asynchronous
Operations are completed
even before they reach the
destination

Other implementations possible with the same API

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI17

Image migration: switching

What if management crashes?
Guest sends I/O to QEMU

QEMU completes synchronizing
the two images

Guest sends more I/O to QEMU

 Event!

 Must restart with source image

 Source and destination identical

 Must restart with dest image

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI18

“Dirtiness” of destination

Guest sends I/O to QEMU

Guest sends more I/O to QEMU

 Destination image dirty

 Destination image clean

 Destination image clean

Restart with destination

Restart with source

QEMU completes synchronizing
the two images

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI19

Solution

● Add a persistent dirty bitmap
● Initialize dirty bitmap with all allocated sectors
● After a crash, if “all zeros” start QEMU with the

destination image
● Otherwise, start with the source image

● Need to be careful!
● Write new “1” bits synchronously upon guest flushes
● Write “0” bits asynchronously
● msync improvements sent to LKML :)

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI20

Other dirty bitmap uses

● What if the guest exits?
● Management can pick up the job and complete it offline

● What if the copy is paused?
● Dirty sectors will accumulate and will be cleared later

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI21

Migration without shared storage

● What if the target of the copy is an NBD server?

● I can migrate entire VMs to other hosts, including disks
● That will take a while...

● I can replicate disks elsewhere
● High availability
● Continuous snapshotting

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI22

Migration without shared storage

Source Destination

NBD
Server

QEMU

QEMU

 Steady state:
 keep copying...

 Start copying
 RAM

 Start copying
 disks

 Send device
 state

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI23

Status

● Snapshotting
● Added in 0.14
● Atomic snapshot of multiple disks since 1.1

● Copy-on-read, streaming
● New in 1.1

● Image migration
● Will be in 1.2
● Dirty bitmap too, hopefully

LIVE BLOCK DEVICE OPERATIONS IN QEMU | PAOLO BONZINI24

Thanks!

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

