Rockwell
Collins

rociwey. . A
Collins

* Goals

* Project Approach & Results
* Future Ideas

* References

Collins

Goals

* To quantify the effects of the many optimizations

available and see what effect, if any power
management has

* Most Important Requirements (MIRs)

— Minimal startup and low latency processing time
— On-demand Power Management

* Background

— Utilized a OMAP3 processor for image processing
— Linux 2.6.39.4 Kernel with OMAP PM patches
— Buildroot w/ Crosstool-ng toolchain

Rockwe

s A

Project Approach

* Cost/Benefit

— Compiler - Co-Processor - Power Management -
Specialized Cores

— Supporting software (which kernel, packages,
vendor libraries, etc)

* Define benchmarking tool

* Gather metrics for optimization methods applied to
— Platform (Kernel/rootfs)
— Application
— With power management active

Rockwe

s A

Project Approach: Compiler/Toolchain

* Gotchas

— Are Binary compatibility & architecture (armvs, v6, v7a....)
masking a problem?

— Are your Platform & App using the same toolchain?

— Are features like VFP (vector Floating Point) & Advanced SIMD
extension (aka NEON) enabled?

* Building your own has some additional benefits
- Source control & ability to recreate/fix issues
- Geared towards your CPU arch & hardware FPU
- Could tailor kernel headers to get a newer feature
— Possibly incorporate the latest Linaro GCC

Know your toolchain!

5

Rockwe

s A

Project Approach: Benchmarking Tool

* OpenCv 2.1

— cvMatchTemplate() algorithm as the test case
cvMatchTemplate(img, tpl, res, CV_TM_CCORR_NORMED);

— Lots of matrix math

— Each of the time measurements were just for the
algorithm execution and not the image load time

— 5.5MB image is searched for the image of a small
boat

Rockwe

s A

Project Approach: Metrics Test #1

* Test: Compiler Optimization

Description: Kernel and Rootfs are built with same flags below
and executing off an SDCard.

* Flags:
CFLAGS += -pipe -03

* Result: ~19.35sec @800Mhz

7

Rockwel/
Collins

Project Approach: Metrics Test #2

Test: Compiler Optimization & use of hardware co-processors

Description: Kernel and Rootfs are built with same flags below
and executing off an SDCard.

* Flags:
CFLAGS += -pipe -O3 -mfpu=neon -ftree-vectorize -mfloat-abi=softfp

* Result: ~4.91sec @800Mhz
~75% increase in performance

25

B O3
B O3 w/Neon

Compiler Co-Processor

8

Rockwe

s A

Project Approach: Metrics Test #3

* Test: Compiler Optimization & Power Management

Description: Kernel and Rootfs are built with same flags below. Power

management is enabled to idle and frequency scale the CPU on-demand
between 300 and 800Mhz. It uses the default scaling trigger threshold for
the 2.6.39.4 kernel.

(Note: Purely ARM core instructions.)

19.4

* Flags: 1030
Ple 03 o

* Result: ~19.39sec @300-800Mhz %iiz =03 wiPw
~40msec (2%) increase in processing time w/ PM " 10ss

19.33

Comment: solely ARM instructions cause the scheduler to have more

demand for a higher clock speed earlier, so it results in a small increase in
the additional processing time required.

Compiler Power

Management

Rockwe

s A

Project Approach: Metrics Test #4

Test: Compiler Optimization, co-processors and Power Management

Description: Kernel and Rootfs are built with same flags below. Power

management is enabled to idle and frequency scale the CPU on-demand
between 300 and 800Mhz. It uses the default scaling trigger threshold for
the 2.6.39.4 kernel.

(Note: ARM core and Neon instructions.) -,

* Flags:

-pipe -O3 -mfpu=neon -ftree-vectorize -mfloat-abi=softfp o

§ 5 H O3 w/Neon
@ 003 w/Neon &
* Result: ~5.12sec @300-800Mhz g P
~210msec (4%) increase in processing time w/ PM " s

4.8

Comment: Less time spent executing ARM instructions, since the Neon

core is offloading some of the processing, causes more execution at 300Mhz
and a slight increase in processing time.

Compiler Power Co-Processor

Management

10

Rockwe

s A

Project Approach: Future Tests

* Finish testing with DSP and Tl Codec Engine
— Initial tests with CMEM, LPM, DSPLINK, Tl Codec Engine are working

— Issues were found with the C6Accel used in SoC OpenCV DSP work
(newer Tl libraries, kernel and compiler issues.....)

— Tl measurements with Integra SOC (floating point DSP) show a 86%
speed up for the match template algorithm

ARM Application ARM + DSP Application
Shared Memory
A Preamble Preamble A
Start DSP and g 1
parform parallel c Image
B Intensive processing) Capture
processing Ssyncwith OSP . :
DSP IPC Link ARM | :I
Eplogue D
c PanaliEkestie C6EZAccelf | .n ' {C6EZAccel Image
processing . -2l i .
Algorithm f i . API Display
ot o o o e i Tt e i |
’ e B D
(1] (1]

Compiler Power Co-Processor Specialized

Management Cores

11

Collins

Project Approach: Performance Metric Summary

The key to the next step is controlling offloading overhead

12

Rockwe

s A

Project Approach: Power Management Test

* Tools » bench power-supply and data logging multimeter
* Startup board (power-supply is set to a 1A limit at 5V)

* First test is on-demand

[root@buildroot ~]# echo "800000" > /sys/devices/system/cpu/cpuO/cpufreq/scaling_max_freq
[root@buildroot ~]# echo "ondemand" >/sys/devices/system/cpu/cpul/cpufreq/scaling_governor
cpufreg-omap: transition: 800000 --> 300000

[root@buildroot ~]# ./opencv_templatematch

WORKING>>>

cpufreg-omap: transition: 300000 --> 800000

5.120000 seconds of processing

t1: 320000 t2: 5600000

Clockspersec: 1000000

cpufreq-omap: transition: 800000 --> 300000

[root@buildroot ~]#

* Second test is userspace set frequency

[root@buildroot ~]# echo "userspace" > /sys/devices/system/cpu/cpuO/cpufreq/scaling_governor

[root@buildroot ~]# echo "800000" > /sys/devices/system/cpu/cpuO/cpufreq/scaling_setspeed

cpufreg-omap: transition: 300000 --> 800000

[root@buildroot ~]# ./opencv_templatematch

WORKING >>>

4.910000 seconds of processing

t1: 110000 t2: 5020000

Clockspersec: 1000000

[root@buildroot ~]# 13

Rockwe

s A

Project Approach: Initial Power Measurements

BeagleBoardXM - OpenCV Template Match Power Draw
3

O

—

v v : 4
=+ ARM@800Mhz
15 ==ARM@300-800Mhz
: : Est. ARM@300-800Mhz & DSP

Power (watts)

eeeeer e enen s i
1 i Orig. Processing;

0.5

1 2 3 4 5 6 7 8 9 10 11 12

Time(Seconds)

* Note: the DSP adds an additional ~375mW, shown in yellow & prevents the
ARM from scaling up to 800Mhz. The chart shows only an estimate of DSP
power drawis; and an approximate timeline from Tl whitepaper findings.

* If an OMAP GPU options was added, the approx power draw would increase
by ~93mW. We're not sure yet how much overhead this would cause on
the ARM...

14

goc/ey

Future Ildeas

* Investigate the new issues of Power Management in a multi-
core world

— How could load statistics be maintained for dynamic power control
across cores?

— Maybe add hooks into existing CPUFreq framework for on-demand
based on anticipated completion from other cores? What if Linux on
the primary CPU(s) suspended while the offloaded task is being
processed?

OMAP5432

Dynamic memory manager ARM ARM
Cortex-M4 Cortex-M4

ARM®
Cortex “-AB

POWERVR™ |mini-| IVA-HD
SGX544-MPx | CH4x video
Graphics Display Subsysten 3D graphics | DSP | accelerator
Accelerator

(3730 only)

L3 Network-on-chip interconnect

C64x+ DSP).
800 MHz / 660 MHz Accelerator
720p h.264
L‘:m'.mo T.)Up ﬂqpeg.—‘l
L2:112KB 720p mpeg?2

Timers, Int Controller, Mailboxes,
System DMA
Boot/Secure ROM, L3 RAM

M-Shield™ system security technology: SHA-1/SHA-2/MDS5,
DES/3DES, RNG, AES, PKA, secure WDT, keys, crypto DMA

Audio processor

L3/L4 Interconnect

[7] 15

Rockwe

s A

Future Ildeas

* GsoC project: OpenCV DSP Acceleration (2010)
Investigate OpenCV code issues (lots of floating point and STL)
Gather power, timing and latency/IPC overhead numbers using the

Tl Codec Engine approach
Possibly implement custom DSP approach based on results

* GPU
Investigate (future) SGX Graphics SDK with OpenCL support

Currently the only published vendor supporting OpenCL is ZiiLABS
(ZMS SOC) and TI (OMAP5)

16

Rockwe

s A

Project Information

* Hardware
- BeagleboardXM
- (optional) LI-5MO03 camera

* Repository & Wiki
— includes xloader, uboot, sdcard scripts, kernel & rootfs, test sequences

git://github.com/matthew-I-weber/buildroot.git
https://github.com/matthew-I-weber/buildroot/wiki

* Buildroot Overview

http://free-electrons.com/pub/conferences/2011/elce/using-buildroot-real-
project.pdf

17

Collins

Credits/References

[1]http://www.ti.com/lit/wp/spryl75/spryl75.pdf

[2]http://www.ti.com/lit/wp/spryl44/spryl44.pdf

[3]https://code.google.com/p/opencv-dsp-
acceleration/wiki/GettingStartedl

[4]http://old.nabble.com/Request-for-comments-on-packages-for-Tl
%27s-OMAP3-and-DM365-processors-td29741226.html

[5]http://processors.wiki.ti.com/index.php/OMAP3530 Power_ Estimatio
n_Spreadsheet

[6]http://www.sakoman.com/OMAP/an-overiew-of-omap3-power-
management-with-2639-pm.html

[7]http://www.ti.com/general/docs/wtbu/wtbugencontent.tsp?
templateld=6123&navigationld=11988&contentld=4638

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

