
A simplified thermal framework
for ARM platforms
Amit Daniel
Power Management Working Group, Linaro
Lead Engineer, Samsung electronics

Contributions by:
 Amit Daniel Kachhap, Linaro (Samsung)
 Vincent Guittot, Linaro (ST-Ericsson)
 Robert Lee, Linaro (Freescale)

Why Thermal management on
ARM?

 Modern System-on-Chips (SOCs) have considerable higher thermal
levels than prior generations.
– System Integration → more transistors, dense gates in the same area

and more leakage.
– Performance requirements → much higher processor frequencies

and bus speeds.
–More cores → multiple cpu core, multiple gpu core and multiple h/w

accelerators.
 Cannot cool most SOCs in a traditional sense
– Package size limitations.
– Unavailability of heat sinks, fans, etc.

Why Thermal management on
ARM? Continue...

 Knobs which can be used for cooling down SOC
– Power gating/ clock gating the peripherals and components.
– Performance reduction → cpu specific thermal

management → frequency reduction, longer cpu idle states.
– P =K * V^2 *I, so voltage reduction of the soc components,

battery supply etc important.

Existing kernel Thermal
Framework

 Very good definition and basic abstraction concepts
(Documentation/thermal/sysfs-api.txt).

 Concepts of thermal zones, trip points and cooling devices.
 Framework to register thermal zone and cooling devices.
 Performs a routing function of generic cooling devices to generic

thermal zones with the help of very simple thermal management
logic.



–


Existing kernel Thermal
Framework cont...

 Good userspace hooks and pointers of thermal zone
attributes and cooling devices through sysfs.

 Many cooling devices such as processor, LCD etc
abstracted inside ACPI specification layer.

Enhancement in Thermal
Framework

 The in-kernel thermal algorithm is mostly polling and
need some modification.

 The cooling devices binded initially to a trip point so
some cooling statistics/heuristics may be useful.

 To verify that cooling devices cool properly.
 Provision to add cooling devices dynamically.
 Some ways to use the cooling devices low level

handlers(cpufreq, cpuidle, cpu throttling etc) in a generic
way.

 The current in-kernel thermal algorithm should lock on a
trip point for some cases.

Work implemented till now

In-kernel framework used for
thermal solution

 Platform specific temperature sensor driver to export
temperature information in necessary format.

 Thermal zone and cooling device binding separated into
architecture and non architecture parts.

 Currently they are placed inside driver/thermal/
directory.

 Non architecture specific cooling devices in further
slides.

 Tested for samsung and freescale platforms.

Hardware

Kernel

Temp sensor

Platform part

Cooling devices 1, 2...

In-kernel algorithm

Register

Export APIExport API

THERMAL FLOW DIAGRAMTHERMAL FLOW DIAGRAM

Generic cpu cooling devices
 Patches submitted for generic cpufreq and cpuhotplug

cooling devices.
 They are nothing but a simple wrapper and provides a

registration/un-registration api's.
 These api's provides cooling device pointers which can be

mapped to a trip points as required.
 All these api's multi-instance in behaviour.
 Currently they are placed inside driver/thermal/

directory.
 The link to the patches are

https://lkml.org/lkml/2011/12/13/188

Generic cpu cooling devices
continue...

 The api signatures are,
– struct thermal_cooling_device *cpufreq_cooling_register(struct

freq_pctg_table *tab_ptr, unsigned int tab_size, const struct
cpumask *mask_val)

– void cpufreq_cooling_unregister(struct thermal_cooling_device
*cdev)

– struct thermal_cooling_device
*cpuhotplug_cooling_register(const struct cpumask *mask_val)

– void cpuhotplug_cooling_unregister(struct
thermal_cooling_device *cdev)

Generic cpu cooling devices
continue...

Support to report cooling statistics

 Add a sysfs node to report cooling achieved by all cooling devices on a
single trip points.

 The cooling data reported will be,
➔ Absolute if higher temperature trip points are arranged first.
➔ Cumulative of the earlier invoked cooling handlers.

 The statistics reported will be fairly correct if the cooling devices
added brings down the temperature in a symmetric manner.

 The link to the patches are
https://lkml.org/lkml/2012/1/18/69

Support to report cooling statistics
continue....

 The statistics reported looks like
cat /sys/class/thermal/thermal_zone0/trip_stats
 0 0
 1 11000
 2 5000

 Here, trip point 1 produces a temperature drop of 11
degree C.

 Trip point 2 reports a temperature drop of 5 degree C.
 Clearly trip point 0 threshold is never reached.

Creating a new trip type

 A new trip type created (STATE_ACTIVE).
 This trip combines the benefit of of trip type ACTIVE and PASSIVE

into one.
 This is useful for a type of cooling devices which is registered only

once but can map it's different cooling state to different trip
points.

 The link to the patches are https://lkml.org/lkml/2011/12/13/187

Future work
 Currently the number of trip points fixed to 12. Making it

dynamic will be helpful.
 Enhance devfreq driver to expose policy constraints.
 Adding some more trip types which will lock in a trip points.
 More cooling devices with a generic wrapper around them.
 Some PMQOS hooks/notifications in the thermal management.
 Moving the generic code in drivers/acpi ??

THANKS

Q/A ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

