Accelerating Android Builds

Eric Melski, Chief Architect
Electric Cloud

ericm@electric-cloud.com

About Electric Cloud

Leaders in Software Delivery Acceleration and Automation
Helping large-scale, Fortune 500 achieve demonstrable results
9 patents in the domain of parallel computing, build acceleration

Created ElectricAccelerator in 2002
Ground-up reimplementation of GNU make
Faster builds via parallel and distributed processing — with a twist!
Dependency detection and correction means builds never break?

Used by hundreds of companies, thousands of users,
millions of builds!

. _ _ electric
Due to execution ordering problems I CLOUD

http://images.google.com/imgres?imgurl=http://www.samsung.com/gr/presscenter/images/samsung-logo.jpg&imgrefurl=http://www.samsung.com/gr/presscenter/awards/index.htm&h=290&w=496&sz=15&hl=en&start=1&tbnid=evZTc_XRtk9rGM:&tbnh=76&tbnw=130&prev=/images?q=samsung+logo&svnum=10&hl=en&sa=X
http://images.google.com/imgres?imgurl=http://www.swdinc.com/images/Delphi Logo.gif&imgrefurl=http://www.swdinc.com/dip_spin_specifications.htm&h=96&w=192&sz=3&hl=en&start=4&tbnid=1BFc3BLdQmvZeM:&tbnh=52&tbnw=103&prev=/images?q=delphi+logo&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.phonecardcentral.com/store/025.gif&imgrefurl=http://www.phonecardcentral.com/store/&h=186&w=304&sz=36&hl=en&start=1&tbnid=iIYpGWa0Dy_JBM:&tbnh=71&tbnw=116&prev=/images?q=caterpillar+tractor+logo&svnum=10&hl=en

» Chief Architect at Electric Cloud
* Responsible for ElectricAccelerator and Electriclnsight
* Founding member of Electric Cloud in 2002
* More than 10 years experience analyzing and accelerating builds

@emelski

http://blog.melski.net

1 Source: Gartner, February 2013 ?:Ifétlgllg

http://blog.melski.net/

Why look at Android builds?

Android is everywhere

68% of global mobile phone market share?!

Explosion of non-phone applications
Automotive (Saab, Renault)
Entertainment (Ouya, Nvidia)
Exercise equipment (NordicTrack)
Rice cookers! (Panasonic)

Android is everywhere
... and that means thousands of developers building Android
What if we can make those builds faster?

How would your development process change?
How much more could you achieve?

1 Source: Gartner, February 2013 ?:Iﬁétl;llg

What is (and is not) covered in this talk?

Build acceleration techniques fall into two broad categories:
Hardware improvements like faster CPU’s and better disks
Software improvements like smarter build tools and faster compilers

In general, hardware and software improvements are complimentary
If you want the fastest possible builds, leverage both!

This talk is about software techniques for build acceleration
Given a fixed hardware platform, how fast can we build Android?
Or, what do you do when you reach the limits of your hardware?

1 Source: Gartner, February 2013 ?:Iﬁétl;llg

AOSP LOC Evolution

Jan 2009 - Jan 2013!

18,000,000

16,000,000 ~

4 q’e
14,000,000 T 4 2y,
7 7 (]
]

12,000,000 / 7,
7 /C‘
10,000,000 / 2 3, S
& Linux Kernel

/ < @ ANdroid
8,000,000 <2

/‘o Mozilla Firefox
iz
° Chromium
6,000,000 == \\/ebKit
/
4,000,000 E—
2,000,000 J/
0
94 9 92 v A % 94 % 94
% X2 % 0, % 0, % 2 %
% 7 7, 7> 75 .
electric
/ CLOUD

1 Source: http://www.ohloh.net, http://en.wikipedia.org/wiki/Android_version_history (February 2013)

AOSP Build Evolution

Android Version Release Date LOC GNU Make Build Time
Growth % Build Time?2 Growth %
2.2 May 2010 8,837,858 - 28m55s -
2.3.4 April 2011 11,492,324 30% 33m10s 15%
40.1 October 2011 12,827,330 12% 1h13mb4s 123%
41.1 July 2012 15,028,331 17% 1h28m1lls 19%
4.2.2 February 2013 15,266,8033 2% 1h32m56s 2%
01:40 +204 18
+19% — [
01:26 16 .2
. — | =
+123% +2% 14 =
01:12
12
00:57 / .
eB=Build Time
00:43 8 =] OC
6
00:28 [
+15% 4
00:14 >
00:00 T T . 0 .
2.2 23.4 4.0.1 411 4.2.2 %Ifétﬂ's

1 http://www.ohloh.net, 2 Builds performed on 8-core 16GB RAM server, 3 LOC data as of December 2012

Android Development Landscape

' electric
/ CLOUD

Common wisdom about Android builds

| can just...
... add more cores
... use distcc
... use ccache

“The Android build is as optimized as it can be!”

electric
 CLOUD

The common wisdom is wrong.

Sidebar: how much faster is “interesting”?

Some large mobile device makers run > 50K builds/week
At 15 minutes per build that's 12,500 hours of build time
A reduction of just one minute would save 800 hours every week

What about wait time?

Faster builds = more iterations
Faster builds = higher quality
Faster builds = lower time to market

electric
 CLOUD

How fast is GNU make?

Android 4.1.1 Build Time with GMNU make

1:30e000 ~
1:15:00
1:00:00 (= .
e Besttime: ~15m
o« A48-cores
45:00 - « 128GB RAM
« No ccache
3000 =
15:00
| | | | |] I
4 a8 15 20 24 32 48

Cores

electric
 CLOUD

What if we add ccache?

ccache helps, but not as much as you might hope

Android 4.1.1 Build Time with GNU make

gmake ——

25:00 - gmake+ccache

20000 =

15:00

13:00
12:00 —

10000 -

16 24 32 48
Cores

electric
 CLOUD

Problem: Visibility

Knowing the end-to-end time is great but not actionable

We need visibility
Where is the time going?
What are the bottlenecks?
Are there opportunities for improvement?

How do we get that visibility?
Instrument the build... somehow! strace, echo, hack gmake, or...

Electriclnsight
Visualization and analysis of builds run with ElectricMake
Let’s pump this build through emake and see how it looks!

electric
 CLOUD

Solution: ElectricInsight

What can we see from here?

An ideal build would look like a tightly packed box
Overall looks almost perfect — well done, Android team!

But! a few things stand out:
Crazy long parse timel

Gaps at the end of the build, indicative of serializations
Some very long jobs, like doc-comment-check-timestamp

WEe'll look at each, but first: what if we just use more cores?

1 emake parsing may be slower than gmake parsing

electric
 CLOUD

Longest serial chain

Best possible is about 15m

Longest serial chain overall is 15m16.82s

mﬂﬂargethnmmnrﬁdnnsﬁdnn-nnmment-nheck—timestamp J0D000717364567980 ||~/
rule Start: 466.944807 End: 766.014810 Length: 299.070003

uuﬂtargetfcummumduc:s!apl-ﬁtuhsatlmemamp JO0007f7364567acl
ﬂut.'target.'cummurmhp.mvﬂ LIBHﬂHIES.I'andrmd stuhs current intermediatesiclasses.jar J00007f73646390c0
ﬂmnargeﬂcﬂmmumﬂhﬂﬂvﬂ LIBHAHIESJandrﬂm EIUIJE currem _intermediates/javalib.jar JO0007f7364639160

470994 | sannthe (=

._ Fir 3 o

Jtargeﬂcummnrﬂuhp.m‘lm LIEHAHIES.I'andmﬂ-ewvanahleapeed intermediatesiclasses-full-debug.jar JO0007f736463b8c0 J

ﬂut!mrget!cﬂmmumﬂhﬂﬁvﬁ LIBHAHIEEIandmm:bvanathpeed intermediatesiclasses.jar JO00071736463baal

ﬂutﬂarget.'cﬂm mnrﬂnhp.]ﬁ‘l."ﬁ_LIB HﬂHIES.I'andrmd-emranahleﬁpeed_lnte rmediates/javalib.jar J000071736463baf0 |

iclasses-with-ocal dex)| outtarget'commonidocs/doc-comment-check-timestamp ...estamp -

electric
 CLOUD

Projected runtime with more cores

]

=
(=]

L
t

£ad
Pl

A
G
£ 40
M
T
S 45

]

i)
ol

0 10 20 30 40 50 60

Minutes (est.)

@’I/electric
 CLOUD

Why doesn’t ccache help more?

Lots of non-compile work in the build
Most compiles are already pretty fast (1.3s average)

Under ideal conditions for ccache, best improvement is about 4x!

Serial build
Completely full cache (make ; make clean ; make)

Packaging
3660.09s
11.57%
Compile
23952.59s
75.73%
Library link
350.71s
1.11%
Legend:

Category | Time (s) | % oftotal | #jobs | Average (s) | [=!
Compile 23952.59 75.73 17566 1.36 J
Packaging 3660.09 1157 1464 250

M| Miscellaneous 2342.30 7.41 4413 0.53

M Flesystem /O 1190.55 3.76 2476 0.48
Library link 360.71 111 1386 025 ||=

Problem: long parse time

Why do we build?
To transform sources into deliverables (programs, docs, etc).

Does parsing makefiles transform sources into
deliverables?

Nope.

Parsing makefiles is pure overhead
But you have to tell make what to do somehow
Unless you want to manually invoke the compiler, linker, etc.

electric
 CLOUD

Solution: parse avoidance

What if we don’t parse (every time)?
Makefiles don’t change very often, so why reparse every time?

Reuse parse results from a previous build, as long as...
Makefiles are unchanged (MD5)
Command-line i1s unchanged
Environment is unchanged

How do we do it?

Electric Make already has parse results in a reloadable form, just
need to add cache management

GNU make doesn’t, but could be modified

electric
 CLOUD

Parse avoidance impact

1l
1l
1l
1l
il
[
[
=
[[
i
1l
1l
[TTE
1l
[
il
il
m

Problem: serializations

Gaps In visualization suggest serializations

Q: How many dependencies are there in the
Android build?

A: More than you think!

electric
 CLOUD

Android Dependency Graph ° L
2T 7

L %
« Dump all makefile rules » ®
« 100,000 files/targets \
4 &

» 1,990,628 dependencies

Dependencies in Android

~19 dependencies per file: why so many?
Consider a typical build structure:

lib.a: foo.o bar.o
foo.o: foo.c foo.h util.h
bar.o: bar.c bar.h util.h

Some files will have many dependencies
Most have only a few
What is going on in Android?

electric
 CLOUD

Superfluous dependencies in Android

Do we really need all 1.9M dependencies?

The filesystem can tell us!
Collect a list of files actually used to generate a target
Compare to the list of prerequisites specified in the makefile

Example:

foo.txt:
echo “Hello” > foo.txt

bar.txt: foo.txt
echo “World” > bar.txt

Why not run foo.txt and bar.txt in parallel?

electric
 CLOUD

L]
.
o o e

.
.
.. °

°
e o
°
o ®
°
°
°
o o .
e °
°
° .
.
° .
°
Vs
°
"
oo N
- °
7
L /
° °
°
» °
°
° °
°
.
° ® .
°
. °
°
“ - ° o
°
° ° O
N °
° - [
o :
.
N -3
° < ¥ /
| / /
/ //

« 100,000 files/targets] / o
- 288,804 dependencies |- S

i

Andro

Actual

ies in

‘Specified

3]
=
0
ye)
=
o
o,
)
ye)
Ly |
d
-
wd
3!
K
n
P
ye)
-
-
3
0
o,
»

Solution: dependency optimization

Impossible to manually eliminate superfluous
dependencies

Electric Make can prune them automatically

If you use gmake, you can achieve the same effect:
Remove existing dependency specifications
Generate minimal dependency specifications from emake data
Before:
$ (OBJECTS): %.0: %.cpp $(ALL HEADERS) $ (OTHER DEPS)
$ (COMPILE.CC)
After:

S (OBJECTS): %.0: %.cpp
S (COMPILE.CC)
foo.o: foo.h util.h

bar.o: bar.h util.h generated.h electric
. CLOUD

Dependency optimization impact

L T e e e e e e s e [O A O
0 1 2 3 4 4] 6 T 8 4 10 1 12 13 14 13 16

Problem: long jobs

Several long jobs in Android build:

Longest jobs:
uuﬂlargeﬂcnmmurﬂduc5Muc~cumment~check=tlmestamp JO00O7f7264567980
<mname> [J0000000002188a20
mﬂﬂargeﬂnmmorﬁnbﬂ.m\m IJERARIES.'Tramemk Intermediatee‘.hmproguard.nlasm—ﬁﬂ‘t—lnnal.dex JO0007f73645677a0
rule Start: 347303202 End: 462336772 Length: 115.033570

oumarget.'pmducugenencmhpﬂﬂm LIEHﬂRIESﬂthWHEom intermediates/Function.o JOOO00TIT364596fa0
nuﬂhustﬂlnmtaxaﬁmtmEXEﬂLITHBLESNm-testsatf mtermedlatesrtests JO0007I736476ed50

uuﬂlargeﬂpruducﬂgenerm!uhpSHARlIED LIB_HARIESHsan-a.rm linux_intermediatesithread sanitizer.o JO00OTIT3647c5500
outﬂmsﬂcommorﬂuhp.]ﬁvﬁ LIBHAHIES.I'apache harmonrt_e.stﬁ hostdex_intermediatesiclasses.dex JO0007I7364752510
uuﬂhusﬂcummur!!fx_h_!!.}lﬁ‘l._"ﬁ LIB RAHIES!{:ureqestﬁa.l'lu_s_ni%:{t_ :lliltermematem{:las ses-full-debug.jar JOOO0TIT364752b10
oumargeucomméﬂﬁﬁiﬁ#ﬂ LIBRA.HIESHramemrIL mermeumes.-classes-ruu-dehug jar J00007f7364567480

Long jobs impose a lower bound on speed
doc-comment-check-timestamp IS nearly 5m!

electric
 CLOUD

Solution: cache javadoc (TBD)

Concept: like ccache, but for javadoc

Cache output, reuse in next build if...

Command-line args match
Input file MD5’s match

Conservatively estimate this could cut 45-60s
Javadoc job itself could be reduced by 4m or more
End-to-end impact is less due to parallelism

electric
 CLOUD

Summary

Google has done a great job of optimizing Android builds
But there’s still room for improvement!

Android 4.1.1 Build Time

20:00 gmake ——
emake —we—

18:00
16:00
14:00 =
12:00 -
10:00
8:00
6:00
4:00

2:00

24 32 48 electric
 CLOUD

Cores

Summary — what about ccache?

ccache complements other features for even faster builds

Android 4.1.1 Build Time

10:00 —

14:00 ~

8:00

6:00

4:00

2:00

gmake+ccache
emake+ccache ——ee—
|

24 32 48 electric
Cores . CLOUD

Availability

ElectricAccelerator 7.0
Avallable late Q1 2013
Includes parse avoidance, dependency optimization

Download from

electric
 CLOUD

http://www.electric-cloud.com/eade
http://www.electric-cloud.com/eade
http://www.electric-cloud.com/eade

Q&A

