
Accelerating Android Builds
Eric Melski, Chief Architect

Electric Cloud

ericm@electric-cloud.com

About Electric Cloud

• Leaders in Software Delivery Acceleration and Automation

• Helping large-scale, Fortune 500 achieve demonstrable results

• 9 patents in the domain of parallel computing, build acceleration

• Created ElectricAccelerator in 2002

• Ground-up reimplementation of GNU make

• Faster builds via parallel and distributed processing – with a twist!

• Dependency detection and correction means builds never break1

• Used by hundreds of companies, thousands of users,

millions of builds!

1 Due to execution ordering problems

http://images.google.com/imgres?imgurl=http://www.samsung.com/gr/presscenter/images/samsung-logo.jpg&imgrefurl=http://www.samsung.com/gr/presscenter/awards/index.htm&h=290&w=496&sz=15&hl=en&start=1&tbnid=evZTc_XRtk9rGM:&tbnh=76&tbnw=130&prev=/images?q=samsung+logo&svnum=10&hl=en&sa=X
http://images.google.com/imgres?imgurl=http://www.swdinc.com/images/Delphi Logo.gif&imgrefurl=http://www.swdinc.com/dip_spin_specifications.htm&h=96&w=192&sz=3&hl=en&start=4&tbnid=1BFc3BLdQmvZeM:&tbnh=52&tbnw=103&prev=/images?q=delphi+logo&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.phonecardcentral.com/store/025.gif&imgrefurl=http://www.phonecardcentral.com/store/&h=186&w=304&sz=36&hl=en&start=1&tbnid=iIYpGWa0Dy_JBM:&tbnh=71&tbnw=116&prev=/images?q=caterpillar+tractor+logo&svnum=10&hl=en

Who is Eric Melski?

• Chief Architect at Electric Cloud

• Responsible for ElectricAccelerator and ElectricInsight

• Founding member of Electric Cloud in 2002

• More than 10 years experience analyzing and accelerating builds

@emelski

http://blog.melski.net

 1 Source: Gartner, February 2013

http://blog.melski.net/

Why look at Android builds?

• Android is everywhere

• 68% of global mobile phone market share1

• Explosion of non-phone applications

• Automotive (Saab, Renault)

• Entertainment (Ouya, Nvidia)

• Exercise equipment (NordicTrack)

• Rice cookers! (Panasonic)

• Android is everywhere

• … and that means thousands of developers building Android

• What if we can make those builds faster?

• How would your development process change?

• How much more could you achieve?

1 Source: Gartner, February 2013

What is (and is not) covered in this talk?

• Build acceleration techniques fall into two broad categories:

• Hardware improvements like faster CPU’s and better disks

• Software improvements like smarter build tools and faster compilers

• In general, hardware and software improvements are complimentary

• If you want the fastest possible builds, leverage both!

• This talk is about software techniques for build acceleration

• Given a fixed hardware platform, how fast can we build Android?

• Or, what do you do when you reach the limits of your hardware?

1 Source: Gartner, February 2013

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

Linux Kernel

Android

Mozilla Firefox

Chromium

Webkit

AOSP LOC Evolution
 Jan 2009 – Jan 20131

1 Source: http://www.ohloh.net, http://en.wikipedia.org/wiki/Android_version_history (February 2013)

+15%

+123%

+19%
+2%

+30%

+12%

+17% +2%

0

2

4

6

8

10

12

14

16

18

00:00

00:14

00:28

00:43

00:57

01:12

01:26

01:40

2.2 2.3.4 4.0.1 4.1.1 4.2.2

M
il

li
o

n
s

Build Time

LOC

AOSP Build Evolution

Android Version Release Date LOC1 LOC

Growth %

GNU Make

Build Time2

Build Time

Growth %

2.2 May 2010 8,837,858 - 28m55s -

2.3.4 April 2011 11,492,324 30% 33m10s 15%

4.0.1 October 2011 12,827,330 12% 1h13m54s 123%

4.1.1 July 2012 15,028,331 17% 1h28m11s 19%

4.2.2 February 2013 15,266,8033 2% 1h32m56s 2%

1 http://www.ohloh.net, 2 Builds performed on 8-core 16GB RAM server, 3 LOC data as of December 2012

Android Development Landscape
Real-world challenges at large APAC mobile device maker

Common wisdom about Android builds

• I can just…

• … add more cores

• … use distcc

• … use ccache

• “The Android build is as optimized as it can be!”

The common wisdom is wrong.

Sidebar: how much faster is “interesting”?

• Some large mobile device makers run > 50K builds/week

• At 15 minutes per build that’s 12,500 hours of build time

• A reduction of just one minute would save 800 hours every week

• What about wait time?

• Faster builds = more iterations

• Faster builds = higher quality

• Faster builds = lower time to market

How fast is GNU make?

• Best time: ~15m

• 48-cores

• 128GB RAM

• No ccache

What if we add ccache?

• ccache helps, but not as much as you might hope

Problem: Visibility

• Knowing the end-to-end time is great but not actionable

• We need visibility

• Where is the time going?

• What are the bottlenecks?

• Are there opportunities for improvement?

• How do we get that visibility?

• Instrument the build… somehow! strace, echo, hack gmake, or…

• ElectricInsight

• Visualization and analysis of builds run with ElectricMake

• Let’s pump this build through emake and see how it looks!

Solution: ElectricInsight

What can we see from here?

• An ideal build would look like a tightly packed box

• Overall looks almost perfect – well done, Android team!

• But! a few things stand out:

• Crazy long parse time1

• Gaps at the end of the build, indicative of serializations

• Some very long jobs, like doc-comment-check-timestamp

• We’ll look at each, but first: what if we just use more cores?

1 emake parsing may be slower than gmake parsing

Longest serial chain

• Best possible runtime is about 15m

Best possible is about 15m

Projected runtime with more cores

Why doesn’t ccache help more?

• Lots of non-compile work in the build

• Most compiles are already pretty fast (1.3s average)

• Under ideal conditions for ccache, best improvement is about 4x!
• Serial build

• Completely full cache (make ; make clean ; make)

Problem: long parse time

• Why do we build?

• To transform sources into deliverables (programs, docs, etc).

• Does parsing makefiles transform sources into

deliverables?

• Nope.

• Parsing makefiles is pure overhead

• But you have to tell make what to do somehow

• Unless you want to manually invoke the compiler, linker, etc.

Solution: parse avoidance

• What if we don’t parse (every time)?

• Makefiles don’t change very often, so why reparse every time?

• Reuse parse results from a previous build, as long as…

• Makefiles are unchanged (MD5)

• Command-line is unchanged

• Environment is unchanged

• How do we do it?

• Electric Make already has parse results in a reloadable form, just

need to add cache management

• GNU make doesn’t, but could be modified

Parse avoidance impact

Build time reduced to about 13m30s

Problem: serializations

• Gaps in visualization suggest serializations

• Q: How many dependencies are there in the

Android build?

• A: More than you think!

Android Dependency Graph

• Dump all makefile rules

• 100,000 files/targets

• 1,990,628 dependencies

Dependencies in Android

• ~19 dependencies per file: why so many?

• Consider a typical build structure:

• Some files will have many dependencies

• Most have only a few

• What is going on in Android?

lib.a: foo.o bar.o

foo.o: foo.c foo.h util.h

bar.o: bar.c bar.h util.h

Superfluous dependencies in Android

• Do we really need all 1.9M dependencies?

• The filesystem can tell us!

• Collect a list of files actually used to generate a target

• Compare to the list of prerequisites specified in the makefile

• Example:

• Why not run foo.txt and bar.txt in parallel?

foo.txt:

 echo “Hello” > foo.txt

bar.txt: foo.txt

 echo “World” > bar.txt

Actual dependencies in Android

• 100,000 files/targets

• 288,804 dependencies

Specified vs. Actual dependencies in Android

Specified Actual

Solution: dependency optimization

• Impossible to manually eliminate superfluous

dependencies

• Electric Make can prune them automatically

• If you use gmake, you can achieve the same effect:

• Remove existing dependency specifications

• Generate minimal dependency specifications from emake data

• Before:

• After:

$(OBJECTS): %.o: %.cpp $(ALL_HEADERS) $(OTHER_DEPS)

 $(COMPILE.CC)

$(OBJECTS): %.o: %.cpp

 $(COMPILE.CC)

foo.o: foo.h util.h

bar.o: bar.h util.h generated.h

Dependency optimization impact

Build time reduced to about 12m30s

Problem: long jobs

• Several long jobs in Android build:

• Long jobs impose a lower bound on speed

• doc-comment-check-timestamp is nearly 5m!

Solution: cache javadoc (TBD)

• Concept: like ccache, but for javadoc

• Cache output, reuse in next build if…

• Command-line args match

• Input file MD5’s match

• Conservatively estimate this could cut 45-60s

• Javadoc job itself could be reduced by 4m or more

• End-to-end impact is less due to parallelism

Summary

• Google has done a great job of optimizing Android builds

• But there’s still room for improvement!

Summary – what about ccache?

• ccache complements other features for even faster builds

Availability

• ElectricAccelerator 7.0

• Available late Q1 2013

• Includes parse avoidance, dependency optimization

• Download from http://www.electric-cloud.com/eade

http://www.electric-cloud.com/eade
http://www.electric-cloud.com/eade
http://www.electric-cloud.com/eade

Q & A

