
The Case for Security
Enhanced (SE) Android

Stephen Smalley
Trusted Systems Research
National Security Agency

February 2012

Background / Motivation

● Increasing desire to use mobile devices
throughout the US government.

● Increasing interest in Android as an open
platform with broad market adoption.

● Need for improved security in mobile
operating systems.

2

February 2012

What is SE Android?

● A project to identify and address critical
gaps in the security of Android.
● Initially, enabling the use of SELinux in

Android.
● But not limited in scope to SELinux alone.

● A reference implementation.
● Initially, a worked example of how to enable

and apply SELinux to Android.

3

February 2012

SE Android: Use Cases

● Prevent privilege escalation by apps.

● Prevent data leakage by apps.

● Prevent bypass of security features.

● Enforce legal restrictions on data.

● Protect integrity of apps and data.

● Beneficial for consumers, businesses, and
government.

4

February 2012

Android's Not Linux

● Very divergent from typical Linux.
● Almost everything above the kernel is

different.
● Dalvik VM, application frameworks
● bionic, init/ueventd

● Even the kernel is different.
● Binder, Ashmem, ...

5

February 2012

Android Security Model
● Application-level permissions model.

● Controls access to app components.
● Controls access to system resources.
● Specified by app writers and seen by users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and from system.
● Prevent bypass of app permissions model.
● Normally invisible to users and app writers.

6

February 2012

Android & Kernel Security

● App isolation and sandboxing is enforced
by the Linux kernel.
● The Dalvik VM is not a security boundary.
● Any app can run native code.

● Relies on Linux discretionary access
control (DAC).

7

February 2012

Discretionary Access Control

● Typical form of access control in Linux.

● Access to data is entirely at the discretion of the
owner/creator of the data.

● Some processes (e.g. uid 0) can override and
some objects (e.g. sockets) are unchecked.

● Based on user & group identity.

● Limited granularity, coarse-grained privilege.

8

February 2012

Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, sdcard
● relies on kernel modifications

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.

9

February 2012

SELinux: What is it?

● Mandatory Access Control (MAC) for Linux.

● Enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.

● Even ones that run as “root” / uid 0.
● Can prevent privilege escalation.

10

February 2012

How can SELinux help
Android?

● Confine privileged daemons.
● Protect from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.

● Strongly separate apps from one another.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.

11

February 2012

What can't SELinux mitigate?
● Kernel vulnerabilities, in general.

● Although it may block exploitation of specific
vulnerabilities.

● Anything allowed by security policy.

● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.

12

February 2012

SE Android: Goals
● Integrate SELinux into Android in a

comprehensive and coherent manner.

● Demonstrate useful security functionality in
Android using SELinux.

● Improve the suitability of SELinux for Android.

● Identify and address other security gaps in
Android.

13

February 2012

SE Android: Challenges
● Kernel

● No support for per-file security labeling (yaffs2).
● Unique kernel subsystems lack SELinux support.

● Userspace
● No existing SELinux support.

● Sharing through framework services.
● Policy

● Existing policies unsuited to Android.

14

February 2012

Kernel Support
● Enabled SELinux and its dependencies.

● AUDIT, XATTR, SECURITY
● Implemented per-file security labeling for yaffs2.

● Using recent support for extended attributes.
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.

● Permission checks on IPC operations.

15

February 2012

Userspace Support
● Minimal port of SELinux userspace.

● Labeling support in filesystem tools.

● Labeling at image build time.
● Extensions for init, ueventd, toolbox, installd,

dalvik, zygote.

● JNI bindings for SELinux APIs.

● Settings support for managing SELinux.

16

February 2012

Policy Configuration
● Small TE policy written from scratch.

● Confined domains for daemons and apps.

● MLS categories for app isolation.

● New configuration for app labeling.

● No policy writing for app writers.

● Normally invisible to users.

17

February 2012

SE Android: Size

● full_crespo4g-userdebug

18

Non-SE SE Increase

boot 3444K 3584K +140K

system 161620K 161668K +48K

recovery 3776K 3916K +140K

February 2012

Current State
● Working reference implementation

● originally based on Gingerbread / 2.3.x.
● now based on Android Open Source Project

(AOSP) master branch (4.0.3+)
● tested on emulator, Nexus S, Motorola Xoom

● Still a long way from a complete solution

● But let's see how well it does...

19

February 2012

Case Study: vold
● vold - Android volume daemon

● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from kernel.

● CVE-2011-1823
● Does not verify message origin.
● Uses signed integer without checking < 0.

● Demonstrated by GingerBreak exploit.

20

February 2012

GingerBreak: Overview
● Collect information needed for exploitation.

● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.

● Got root!
21

February 2012

GingerBreak: Would SELinux help?

● Let's walk through it again with SE Android.

● Using the initial example policy we developed.

● Before we read about this vulnerability and
exploit.

● Just based on normal Android operation and
policy development.

22

February 2012

GingerBreak vs SELinux #1
● Identify the vold process.

● /proc/pid/cmdline of other domains denied by
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes it based on
some other means.

23

February 2012

GingerBreak vs SELinux #2
● Identify addresses and values of interest.

● /system/bin/vold denied by policy.
● /dev/log/main denied by policy.

● Existing exploit would fail here.

● Let's assume that exploit writer recodes exploit
based on some other means.

24

February 2012

GingerBreak vs SELinux #3
● Send netlink message to vold process.

● netlink socket create denied by policy
● Existing exploit would fail here.

● No way around this one - vulnerability can't be
reached.

● Let's give the exploit writer a fighting chance
and allow this permission.

25

February 2012

GingerBreak vs SELinux #4
● Trigger execution of exploit code by vold.

● execute of non-system binary denied by
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes exploit to
avoid executing a separate binary.

26

February 2012

GingerBreak vs SELinux #5
● Create a setuid-root shell.

● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.

● Let's give the exploit writer a fighting chance
and allow these permissions.

27

February 2012

GingerBreak vs SELinux #6
● Execute setuid-root shell.

● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.

28

February 2012

GingerBreak: Conclusion
● SELinux would have stopped the exploit six

different ways.

● SELinux would have forced the exploit writer to
tailor the exploit to the target.

● SELinux made the underlying vulnerability
completely unreachable.
● And all vulnerabilities of the same type.

29

February 2012

Case Study: zygote
● zygote - Android app spawner

● Runs as root.
● Receives requests to spawn apps over a socket.
● Uses setuid() to switch to app UID.

● Did not check/handle setuid() failure.
● Can lead to app running as root.

● Demonstrated by Zimperlich exploit.

30

February 2012

Zimperlich: Overview
● Fork self repeatedly to reach RLIMIT_NPROC

for app UID.

● Spawn app component via zygote.

● Zygote setuid() call fails.

● App runs with root UID.
● Re-mounts /system read-write.
● Creates setuid-root shell in /system.

31

February 2012

Zimperlich vs SELinux
● zygote setuid() would still fail.
● Security context changes upon setcon().

● Not affected by RLIMIT_NPROC.

● App runs in unprivileged security context.
● No superuser capabilities.
● No privilege escalation.

32

February 2012

Other Root Exploits
● ueventd / Exploid, vold / zergRush

● similar to vold / GingerBreak

● adbd / RageAgainstTheCage
● similar to zygote / Zimperlich

● ashmem / KillingInTheNameOf

● mprotect PROT_WRITE of property space
● Likewise blocked by SE Android.

33

February 2012

Case Study: Skype
● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption
with world readable permissions.

– account balance, DOB, home address, contacts, chat
logs, ...

● Any other app on the phone could read
the user data.

34

February 2012

SELinux vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each

application.

● MAC: Permissions are defined by the administrator
and enforced for all applications.

● All apps denied read to files created by other
apps.

● Each app and its files have a unique SELinux
category set.

35

February 2012

Was the Skype vulnerability an
isolated incident?

● Lookout Mobile Security
● Symantec Norton Mobile Security
● Wells Fargo Mobile app
● Bank of America app
● USAA banking app

36

February 2012

Case Studies: Conclusion

● Android security would benefit from SE
Linux.
● Android needs Mandatory Access Controls

(MAC).
● SELinux would have mitigated a number of

Android exploits and vulnerabilities.

37

February 2012

Application Layer Security
● SE Android presently limited to kernel-level MAC.

● + a few permission checks in the zygote.
● Also need MAC for the Android permissions model.

● Requires extensions to the frameworks.
● Related work:

● Sven Bugiel et al, Towards Taming Privilege Escalation
Attacks on Android, NDSS '12.

38

February 2012

Timeline of Events
● First public release Jan 6 2012.
● First submission to AOSP Jan 13 2012.
● bionic patches merged Jan 20 2012.
● Other patches in progress.

● Coding Style, minor cleanups.
● Wrap with HAVE_SELINUX conditionals.

39

February 2012

What's Next?

● Finish upstreaming to AOSP.
● MAC for Android permissions.
● Runtime policy management.
● Further integration (kernel and userland).
● Identifying and addressing other security

gaps.

40

February 2012

Questions?
● http://selinuxproject.org/page/SEAndroid
● SELinux mailing list:

● selinux@tycho.nsa.gov

● NSA SE Android team:
● seandroid@tycho.nsa.gov

● My email:
● sds@tycho.nsa.gov

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide_6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

