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Background / Motivation

● Increasing desire to use mobile devices 
throughout the US government.

● Increasing interest in Android as an open 
platform with broad market adoption.

● Need for improved security in mobile 
operating systems.
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What is SE Android?

● A project to identify and address critical 
gaps in the security of Android.
● Initially, enabling the use of SELinux in 

Android. 
● But not limited in scope to SELinux alone.

● A reference implementation.
● Initially, a worked example of how to enable 

and apply SELinux to Android.
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SE Android: Use Cases

● Prevent privilege escalation by apps.

● Prevent data leakage by apps.

● Prevent bypass of security features.

● Enforce legal restrictions on data.

● Protect integrity of apps and data.

● Beneficial for consumers, businesses, and 
government.
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Android's Not Linux

● Very divergent from typical Linux.
● Almost everything above the kernel is 

different.
● Dalvik VM, application frameworks
● bionic, init/ueventd

● Even the kernel is different.
● Binder, Ashmem, ...
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Android Security Model
● Application-level permissions model.

● Controls access to app components.
● Controls access to system resources.
● Specified by app writers and seen by users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and from system.
● Prevent bypass of app permissions model.
● Normally invisible to users and app writers.
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Android & Kernel Security

● App isolation and sandboxing is enforced 
by the Linux kernel.
● The Dalvik VM is not a security boundary.
● Any app can run native code.

● Relies on Linux discretionary access 
control (DAC).
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Discretionary Access Control

● Typical form of access control in Linux.

● Access to data is entirely at the discretion of the 
owner/creator of the data.

● Some processes (e.g. uid 0) can override and 
some objects (e.g. sockets) are unchecked.

● Based on user & group identity.

● Limited granularity, coarse-grained privilege.
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Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, sdcard
● relies on kernel modifications

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.
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SELinux: What is it?

● Mandatory Access Control (MAC) for Linux.

● Enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.

● Even ones that run as “root” / uid 0.
● Can prevent privilege escalation.
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How can SELinux help 
Android?

● Confine privileged daemons.
● Protect from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.

● Strongly separate apps from one another.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.
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What can't SELinux mitigate?
● Kernel vulnerabilities, in general.

● Although it may block exploitation of specific 
vulnerabilities.

● Anything allowed by security policy.

● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.
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SE Android: Goals
● Integrate SELinux into Android in a 

comprehensive and coherent manner.

● Demonstrate useful security functionality in 
Android using SELinux.

● Improve the suitability of SELinux for Android.

● Identify and address other security gaps in 
Android.
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SE Android: Challenges
● Kernel

● No support for per-file security labeling (yaffs2).
● Unique kernel subsystems lack SELinux support.

● Userspace
● No existing SELinux support.

● Sharing through framework services.
● Policy

● Existing policies unsuited to Android.
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Kernel Support
● Enabled SELinux and its dependencies.

● AUDIT, XATTR, SECURITY
● Implemented per-file security labeling for yaffs2.

● Using recent support for extended attributes.
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.

● Permission checks on IPC operations.
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Userspace Support
● Minimal port of SELinux userspace.

● Labeling support in filesystem tools.

● Labeling at image build time.
● Extensions for init, ueventd, toolbox, installd, 

dalvik, zygote.

● JNI bindings for SELinux APIs.

● Settings support for managing SELinux.
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Policy Configuration
● Small TE policy written from scratch.

● Confined domains for daemons and apps.

● MLS categories for app isolation.

● New configuration for app labeling.

● No policy writing for app writers.

● Normally invisible to users.
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SE Android: Size

● full_crespo4g-userdebug
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Non-SE SE Increase

boot 3444K 3584K +140K

system 161620K 161668K +48K

recovery 3776K 3916K +140K
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Current State
● Working reference implementation

● originally based on Gingerbread / 2.3.x.
● now based on Android Open Source Project 

(AOSP) master branch (4.0.3+)
● tested on emulator, Nexus S, Motorola Xoom

● Still a long way from a complete solution

● But let's see how well it does...
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Case Study: vold
● vold - Android volume daemon

● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from kernel.

● CVE-2011-1823
● Does not verify message origin.
● Uses signed integer without checking < 0.

● Demonstrated by GingerBreak exploit.
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GingerBreak: Overview
● Collect information needed for exploitation.

● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.

● Got root!
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GingerBreak: Would SELinux help?

● Let's walk through it again with SE Android.

● Using the initial example policy we developed.

● Before we read about this vulnerability and 
exploit.

● Just based on normal Android operation and 
policy development.
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GingerBreak vs SELinux #1
● Identify the vold process.

● /proc/pid/cmdline of other domains denied by 
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes it based on 
some other means.
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GingerBreak vs SELinux #2
● Identify addresses and values of interest.

● /system/bin/vold denied by policy.
● /dev/log/main denied by policy.

● Existing exploit would fail here.

● Let's assume that exploit writer recodes exploit 
based on some other means.  
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GingerBreak vs SELinux #3
● Send netlink message to vold process.

● netlink socket create denied by policy
● Existing exploit would fail here.

● No way around this one - vulnerability can't be 
reached.

● Let's give the exploit writer a fighting chance 
and allow this permission.
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GingerBreak vs SELinux #4
● Trigger execution of exploit code by vold.

● execute of non-system binary denied by 
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes exploit to 
avoid executing a separate binary.
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GingerBreak vs SELinux #5
● Create a setuid-root shell.

● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.

● Let's give the exploit writer a fighting chance 
and allow these permissions.
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GingerBreak vs SELinux #6
● Execute setuid-root shell.

● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.
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GingerBreak: Conclusion
● SELinux would have stopped the exploit six 

different ways.

● SELinux would have forced the exploit writer to 
tailor the exploit to the target.

● SELinux made the underlying vulnerability 
completely unreachable.
● And all vulnerabilities of the same type.
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Case Study: zygote
● zygote - Android app spawner

● Runs as root.
● Receives requests to spawn apps over a socket.
● Uses setuid() to switch to app UID.

● Did not check/handle setuid() failure.
● Can lead to app running as root.

● Demonstrated by Zimperlich exploit.
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Zimperlich: Overview
● Fork self repeatedly to reach RLIMIT_NPROC 

for app UID.

● Spawn app component via zygote. 

● Zygote setuid() call fails.

● App runs with root UID.
● Re-mounts /system read-write.
● Creates setuid-root shell in /system.
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Zimperlich vs SELinux
● zygote setuid() would still fail.
● Security context changes upon setcon().

● Not affected by RLIMIT_NPROC. 

● App runs in unprivileged security context.
● No superuser capabilities.
● No privilege escalation.
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Other Root Exploits
● ueventd / Exploid, vold / zergRush

● similar to vold / GingerBreak

● adbd / RageAgainstTheCage
● similar to zygote / Zimperlich

● ashmem / KillingInTheNameOf

● mprotect PROT_WRITE of property space
● Likewise blocked by SE Android.
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Case Study: Skype
● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption 
with world readable permissions.

– account balance, DOB, home address, contacts, chat 
logs, ...

● Any other app on the phone could read 
the user data.
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SELinux vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each 

application.

● MAC: Permissions are defined by the administrator 
and enforced for all applications.

● All apps denied read to files created by other 
apps.

● Each app and its files have a unique SELinux 
category set.
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Was the Skype vulnerability an 
isolated incident?

● Lookout Mobile Security
● Symantec Norton Mobile Security
● Wells Fargo Mobile app
● Bank of America app
● USAA banking app
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Case Studies: Conclusion

● Android security would benefit from SE 
Linux.
● Android needs Mandatory Access Controls 

(MAC).
● SELinux would have mitigated a number of 

Android exploits and vulnerabilities. 
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Application Layer Security
● SE Android presently limited to kernel-level MAC.

● + a few permission checks in the zygote.
● Also need MAC for the Android permissions model.

● Requires extensions to the frameworks.
● Related work:

● Sven Bugiel et al, Towards Taming Privilege Escalation 
Attacks on Android, NDSS '12.
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Timeline of Events
● First public release Jan 6 2012.
● First submission to AOSP Jan 13 2012.
● bionic patches merged Jan 20 2012.
● Other patches in progress.

● Coding Style, minor cleanups.
● Wrap with HAVE_SELINUX conditionals.
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What's Next?

● Finish upstreaming to AOSP.
● MAC for Android permissions.
● Runtime policy management.
● Further integration (kernel and userland).
● Identifying and addressing other security 

gaps.
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Questions?
● http://selinuxproject.org/page/SEAndroid
● SELinux mailing list:

● selinux@tycho.nsa.gov

● NSA SE Android team:
● seandroid@tycho.nsa.gov

● My email:
● sds@tycho.nsa.gov
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