Using OpenOCD JTAG It
in Android Kernel

Debugging
Making Android Drivers Work ".

Mike Anderson ‘

Chief Scientist
ANDR"'ID The PTR Group, Inc. ’
B U I LDE RS http://www.theptrgroup.com

S LB

What We Will Talk About

#Device drivers in Android

#The JTAG interface

#Types of JTAG interfaces

#How to use a JTAG to debug the kernel
#0OpenOCD project

#Getting and installing OpenOCD
#Starting OpenOCD

#Connecting GDB

#Debugging Kernel Code w/ OpenOCD

N 2T

Device Drivers in Android

#Thanks to the use of the Linux kernel,
Android has several driver types

» Character, block, network, etc.

#Android uses a formal driver model

» Drivers present a common API such as
open(), release(), read(), write(), etc.

#User-mode device drivers are also
possible
» Via /dev/mem, etc.
» Easier to debug using standard GDB

SFO-ABS-JTAG-3 Copyright 2012, The PTR Group, Inc.

N 2T

Basic Driver Debugging Requirements

+#In order to be able to debug a driver
under Android, you’ll need to add some
support to your platform
» You must have it rooted

- You have to be able to load/unload the drivers
- Can be done via adb

» You’ll need to have busybox installed
- You need several utilities provided by busybox

» You’ll need to compile the kernel with
debugging enabled

SFO-ABS-JTAG-4 Copyright 2012, The PTR Group, Inc.

N 2T

SFO-ABS-JTAG-5

Configure Kernel for Debugging

Enable debugging info and rebuild the kernel

[NN &) Linux Kernel v2.6.33 Configuration
Eile Edit Option Help
Ol I E
Option o] |0ptiﬂn
[+] Userspace /O drivers Show timing information on printks
Tl VLYNG OEnable _deprecated logic
[Staging drivers OEnable _ must_check logic
%86 Platform Specific Device Drivers (1024) Warn for stack frames larger than (needs gcc 4.4)
Firmware Drivers Magic SysRq key
= File systems O 5trip assembler-generated symbols during link
Caches Enable unused/obsolete exported symbols
CD-ROM/DVD Filesystems Debug Filesystem
DOS/FAT/NT Filesystems O Run 'make headers_check' when building vmlinux
Pseudo filesystems 2
Miscellaneous filesystems O Debug shared IRQ handlers
Metwork File Systems = [# Detect Soft Lockups
Partition Types 2 L
Mative language support Kernel debugging (DEBUG_KERNEL)
[Distributed Lock Manager (DLM)
o [EEITETT I (| CONFIC_DEBUG_KERNEL:

[Tracers
OSample kernel code

[KGDE: kernel debugging with remote gd

Security options
= Cryptegraphic AP
Hardware crypto devices
Virtualization
Library routines

4 |

Copyright 2012, The PTR Group, Inc.

(1)

-

Say ¥ here if you are developing drivers or trying to debug and
identify kernel problems.

Symbol: DEBUG_KERNEL [=y]
Prompt: Kernel debugging
Defined at lib/Kconfig.debug:139
Location:

-= Kernel hacking

_N

The Kernel Boot Sequence

+# Like the boot firmware, the kernel starts in assembly
language
» Sets up the caches, initializes some MMU page table entries,

configures a “C” stack and jumps to a C entry point called
start_kernel() (init/main.c)

+# start_kernel() is then responsible for:
» Architecture and machine-specific hardware initialization
» Initializing virtual memory
» Starting the system clock tick
» Initializing kernel subsystems and device drivers
+# Finally, a system console is started and the init process
is created

» The init process (PID 1) is then the start of all user-space
processing

+# Kernel modules can now be dynamically loaded

SFO-ABS-JTAG-6 Copyright 2012, The PTR Group, Inc.

N 2T

Driver Initialization Sequence

#Drivers must register themselves with the
kernel

» register_chrdev(), register_blkdev(),
register_netdev(), etc.

#For block and character drivers you'll
need to assign major/minor numbers
» Can be done statically or dynamically

» Coordinate with
<linux>/Documentation/devices.txt

#You’ll need to create device nodes as well

SFO-ABS-JTAG-7 Copyright 2012, The PTR Group, Inc.

N 2T

Example Loadable Module

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>

MODULE LICENSE ("GPL and additional rights");
MODULE AUTHOR(‘Driver Author@someplace.org);
MODULE DESCRIPTION(My first driver!’);

int init mymodule init module (void) {
prlntk (KERN DEBUG mymodule init module() called, ");

return 0;

}

void exit mymodule cleanup module (void) {
printk (KERN DEBUG ‘mymodule cleanup module() called\n");

}

module init (mymodule init module) ;
module exit (mymodule cleanup module) ;

SFO-ABS-JTAG-8 Copyright 2012, The PTR Group, Inc.

ALPTR

Giving Your Driver Something to do

Character device driver exports services
in file_operations structure

» There are 25 supported operations in the
2.6/3.x kernel

- The function list has changed since early 2.6
kernels

+# You only supply those calls that make
sense for your device

You can explicitly return error codes for
unsupported functions or have the
system return the default ENOTSUPP
error

Typically, the file_operations structure is
statically initialized

» Using C99 tagged initializer format

SFO-ABS-JTAG-9 Copyright 2012, The PTR Group, Inc.

| f" Sc')mething-t

T AT T cT 20)
ol -,&j_-,‘:,(a

= T
Do
".' . A Magaaine for Boys & Gir Everywhere (8
I

struct file_operations #1 of 2

struct file operations ({
struct module *owner;
loff t (*llseek) (struct file *, loff t, int);

ssize t (*read) (struct file *, char user *, size t, loff t *);

ssize t (*write) (struct file *, const char _ user ¥*,
size t, loff t *);

ssize t (*aio _read) (struct kiocb *, const struct iovec
unsigned long, loff t);

*
’

ssize_t (*aio write) (struct kiocb *, const struct iovec *,

unsigned long, loff t);
int (*readdir) (struct file *, void *, filldir t);

unsigned int (*poll) (struct file *, struct poll table struct ¥*);

long (*unlocked ioctl) (struct file *, unsigned int,
unsigned long) ;

long (*compat joctl) (struct file *, unsigned int, unsigned long) ;

int (*mmap) (struct file *, struct vm area struct ¥*);
int (*open) (struct inode *, struct file ¥*);
int (*flush) (struct file *, fl owner t id);

SFO-ABS-JTAG-10 Copyright 2012, The PTR Group, Inc.

_N

LPTR

struct file_operations #2 of 2

};

SFO-ABS-JTAG-11 Copyright 2012, The PTR Group, Inc.

int (*release) (struct inode *, struct file ¥*);

int (*fsync) (struct file *, loff t, loff t, int datasync);

int (*aio_ fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file lock *);

ssize_ t (*sendpage) (struct file *, struct page *, int,
size t, loff t *, int);

unsigned long (*get unmapped area) (struct file ¥*,

unsigned long, unsigned long, unsigned 1long,
unsigned long) ;

int (*check flags) (int);
int (*flock) (struct file *, int, struct file lock *);
ssize t (*splice write) (struct pipe inode info *,

struct file *, loff t *, size t, unsigned int);
ssize t (*splice read) (struct file *, loff t *,

struct pipe inode info *, size t, unsigned int);
int (*setlease) (struct file *, long, struct file lock *¥);
long (*fallocate) (struct file *file, int mode, loff t offset,

loff t len) ;

_N

LPTR

Initializing the file_operations

C99 tagged initialization of the structures
allows you to initialize the fields by name

» No worry about the structure layout (which may

change between kernel revisions)

Un-initialized function entries in the structure

shown below will be initialized to

struct file operations fops = {
.read

.write =
.compat ioctl =
.open =
.release =

};

SFO-ABS-JTAG-12 Copyright 2012, The PTR Group, Inc.

NULL

my read,
my write,
my ioctl,
my open,
my release

N 2T

Old School Driver Registration

Kernel is made aware of a character
device driver when the driver
registers itself

» Typically in the __init function

¥ Registration makes the association
between the major number and device driver

int register chrdev(unsigned int major,
const char *name, struct file operations *fops)

SFO-ABS-JTAG-13 Copyright 2012, The PTR Group, Inc.

N 2T

Old School Driver Registration #2

#Likewise, when a device
driver removes itself from
the system, it should
unregister itself from the
kernel to free up that major
number

#Typically in the __exit
function:

int unregister chrdev (unsigned
int major, const char *name);

SFO-ABS-JTAG-14 Copyright 2012, The PTR Group, Inc.

New-School Driver Registration

+#If you need to get beyond
the 256 major limit, you'll
need to use a different
approach

» This uses a different API,
dev_t, cdev structures and a
much more involved
registration approach

#All of this is beyond scope
for the current discussion,
however

SFO-ABS-JTAG-15 Copyright 2012, The PTR Group, Inc.

N 2T

Statically Linked - Dynamically Loaded

#The typical kernel-mode driver can be
statically linked into the kernel at kernel
build time

» Must be licensed under GPL
» Initialized in start_kernel() sequence
#Dynamically-loaded drivers, a.k.a. kernel

modules, are loaded after the kernel is
booted

» Typically during the init.rc script
» Can have proprietary licenses

SFO-ABS-JTAG-16 Copyright 2012, The PTR Group, Inc.

N 2T

Debugging Device Drivers

+# Statically-linked device drivers are notoriously
difficult to debug

» An error can cause a panic or oops before you can
even get printk() to work

» These will typically require a JTAG to debug them
easily
Dynamically-linked drivers are marginally easier
because you can get more debugging
infrastructure into place before loading them

» The use of read_proc()/write_proc() functions and
printk() are typical

» JTAGs can help here too

SFO-ABS-JTAG-17 Copyright 2012, The PTR Group, Inc.

N 2T

Enter the JTAG Port

The Joint Test Action Group
(JTAQ) is the name
associated with the IEEE
1149.1 standard entitled
Standard Test Access Port
and Boundary-Scan
Architecture

» Originally introduced in 1990

as a means to test printed
circuit boards

» An alternative to the bed of
nails

SFO-ABS-JTAG-18 Copyright 2012, The PTR Group, Inc.

How JTAG Works

#JTAG is a boundary-scan device that
allows the developer to sample the values
of lines on the device

» Allows you to change those values as well

#JTAG is built to allow chaining of multiple
devices

» Works for multi-core processors, too

SFO-ABS-JTAG-19 Copyright 2012, The PTR Group, Inc.

N 2T

JTAG Details

#JTAG is a simple serial protocol
» Enables the use of “wiggler”-style interfaces

#Configuration is done by manipulating the

state machine of the device via the TMS
line b T Temomain

3. TCK (Test Clock)
4, TMS (Test Mode Select)

5. TRST (Test ReSeT) optional.
T™MS

(-
TCK
—

— TM5 — TM5S — TMS

TCK TCK TCK

DEVICE 1 DEVICE 2 DEVICE 3
TDI
[,
TDO
L
SFO-ABS-JTAG-20 Copyright 2012, The PTR Group, Inc.

N 2T

JTAG-Aware Processors

Most embedded processors today support JTAG
or one of its relatives like BDM

» E.g., ARM/XScale, PPC, MIPS

Even the x86 has a JTAG port

» Intel Atom-based processors typically support the
XDB port

» Other x86-based processors may need ITP-700
connectors or interposer boards

#Some processors like MIPS come in different
versions

» Some with JTAG ports for development, some without
in order to save $$$

N 2T

SFO-ABS-JTAG-21 Copyright 2012, The PTR Group, Inc.

JTAG Connections

#The maximum speed of JTAG is 100 MHz

» A ribbon cable is usually sufficient to connect
to the target

#Connection to the development host is
accomplished via
» Parallel port
» USB
» Serial port
» Ethernet

SFO-ABS-JTAG-22 Copyright 2012, The PTR Group, Inc.

JTAG User Interface

#Some JTAG interfaces use
a GDB-style software S =
» Any GDB-aware front end “_": ‘
will work N Sl |

Others have Eclipse plug- —
ins to access the JTAG via
an IDE

#Some still use a
command line interface L T —

........

Source: WindRiver.com

Y =r1r=

SFO-ABS-JTAG-23 Copyright 2012, The PTR Group, Inc.

What can you do with a JTAG?

Typical JTAG usage includes reflashing boot
firmware

» Even the really cheap JTAG units can do this

However, it is in the use as a debugging aid that
JTAG comes into its own

» You can set hardware or software breakpoints and

de

» So
de

oug in source code
ohisticated breakpoint strategies and multi-core

ougging usually require the more expensive units

+#JTAG units can also be used to exercise the
address bus and peripherals

» This is what JTAG was originally designed for

SFO-ABS-JTAG-24

Copyright 2012, The PTR Group, Inc.

N 2T

Hardware Configuration Files

Most JTAG units require you to describe the
hardware registers in a configuration file

» This is also how you describe what processor
architecture you are using
All of that information about register maps that

you collected earlier now goes into the
configuration file

Unfortunately, there is no standard format for
these configuration files

» Each JTAG vendor uses different syntax

SFO-ABS-JTAG-25 Copyright 2012, The PTR Group, Inc.

N 2T

Example Configuration Files

#Many JTAG units split the configuration
files into a CPU regqister file and a board
configuration file

; SDRAM Controller (SDRAMC)

sdramc_mx MM OxFFFFFF90 32 ; SDRAMC Mode Register

sdramc_txr MM OxFFFFFF94 32 ;SDRAMC Refresh Timer Register
sdramc_czr MM OxFFFFFF98 32 ; SDRAMC Configuration Register
sdramc_srr MM OxFFFEFFFOC 32 ; SDRAMC Self Refresh Register
sdramec_ lpr MM OxFFFFFFAQO 32 ;SDRAMC Low Power Register
sdramc_ier MM OxFFFFFFA4 32 ;SDRAMC Interrupt Enable Register

L T L R T L L T2
#
The following are defines for the System Control register addresses.
#
E L S EE T T TEE E E

set SYSCTL_DIDO 0x400FE000 ;# Device Identification 0
set SYSCTL_DID1 0X400FE004 ;# Device Identification 1
set SYSCTL_DCO 0x400FE008 ;# Device Capabilities 0
set SYSCTL_DC1 0x400FE010 ;# Device Capabilities 1
set SYSCTL_DC2 0x400FE014 ;# Device Capabilities 2
set SYSCTL_DC3 0x400FE018 ;# Device Capabilities 3
set SYSCTL_DC4 0xX400FE01C ;# Device Capabilities 4
set SYSCTL_DC5 0x400FE020 ;# Device Capabilities 5
set SYSCTL_DC6 0x400FE024 ;# Device Capabilities 6
set SYSCTL_DC7 0x400FE028 ;# Device Capabilities 7
set SYSCTL_DCB 0x400FE02C ;# Device Capabilities 8 ADC
;# Channels
set SYSCTL_PBORCTL 0x400FE030 ;# Brown-Out Reset Control
set SYSCTL_LDOPCTL 0x400FE034 ;# LDO Power Control
set SYSCTL_SRCRO 0x400FE040 ;# Software Reset Control 0
set SYSCTL_SRCR1 0x400FE044 ;# Software Reset Control 1

SFO-ABS-JTAG-26 Copyright 2012, The PTR Group, Inc.

N

Android-Aware JTAGS

#There are several rather tricky transitions
during the Android booting process

» Transitioning from flash to RAM

» Transitioning from physical addresses to kernel
virtual addresses

#These transitions require the use of hardware
breakpoints

» Both your processor and the JTAG unit need to
support hardware breakpoints to debug these
transitions

#Make sure that your JTAG is “MMU aware”

» It must understand Android/Linux’s use of the
MMU to be of much use for driver debugging

SFO-ABS-JTAG-27 Copyright 2012, The PTR Group, Inc.

N 2T

OpenOCD Project

#This project was started in 2008 to create a
software interface for the inexpensive
wiggler-style interfaces

» Based on a graduate thesis paper

#Original targets where lower-end ARM MCUs
» ARM7TDMI/ARMOTDMI
#Now supports many high-end ARM
processors such as Tl Davinci and Cortex A8
» No working multi-core yet

#Currently hosted as a GIT repository at
http://sourceforge.net/projects/openocd

SFO-ABS-JTAG-28 Copyright 2012, The PTR Group, Inc.

N 2T

Supported Operating Systems

+# OpenOCD is available for the three major O/S
platforms
» Linux, Windows, OS/X
OS/X installation can be found here:

» http:/ /www.ethernut.de/elektor/tools/unix/
openocdosx.html

Windows installation can be found here:

» http:/ /www.ethernut.de/elektor/tools/win/
openocdwin.html
» Based on the YAGARTO project
- Windows ARM tool chain
- http://www.yagarto.de/
- Includes Eclipse support
We'll show you the basics of Linux installation

next

SFO-ABS-JTAG-29 Copyright 2012, The PTR Group, Inc.

N 2T

Getting/Installing OpenOCD - Linux

#0penOCD is available as an anonymous
git clone request:

git clone git://openocd.git.sourceforge.net/gitroot/openocd/openocd
#0Once retrieved, configure and build
(OpenOCD 5.0)

cd openocd

./bootstrap

./configure —-enable-maintainer-mode
make

sudo make install

#You'll need to enable the interface that
yvour JTAG uses

SFO-ABS-JTAG-30 Copyright 2012, The PTR Group, Inc.

N 2T

Example Supported Interfaces

#0penOCD supports over 50 different JTAG
interfaces

altera-usb-blaster.cfg hilscher_nxhx50_etm. cfg olimex-jtag-tiny. cfg
arm-jtag-ew. cfg hilscher_nxhx50_re.cfg oocdlink. cfg
arm-usb-ocd. cfg hitex_str9-comstick. cfg openocd-usb. cfg
at91rm9200. cfg icebear.cfg openrd. cfg

axm0432. cfg jlink. cfg parport. cfg
buspirate. cfg jtagkeyz. cfg parport_dlc5. cfg
calao-usb-a9260-c01. cfg jtagkey2p. cfg rlink. cfg
calao-usb-a9260-c02. cfg jtagkey. cfg sheevaplug. cfg
calao-usb-a9260. cfg jtagkey-tiny. cfg signalyzer. cfg
chameleon. cfg kt-link. cfg signalyzer-hz. cfg
cortino. cfg lisa-1.cfg signalyzer-h4. cfg
dummy. cfg luminary. cfg signalyzer-lite. cfg
flashlink. cfg luminary-icdi. cfg stm32-stick. cfg
flossjtag. cfg luminary-1m3s811. cfg turtelizerz2. cfg
flossjtag-noeeprom. cfg neodb. cfg usb-jtag. cfg
flyswatter. cfg ngxtech. cfg usbprog. cfg
hilscher_nxhx10_etm. cfg olimex-arm-usb-ocd. cfg vpaclink. cfg

hilscher_nxhx500_etm.cfg olimex-arm-usb-ocd-h.cfg vsllink. cfg
hilscher_nxhx500_re.cfg olimex-arm-usb-tiny-h. cfg =xdsioo0vz.cfg

SFO-ABS-JTAG-31 Copyright 2012, The PTR Group, Inc.

N 2T

Supported Target CPUs
#The ARM CPU support is also quite good

aduc702x. cfg at91sam9261.cfg hilscher_netx10.cfg 1pc2478.cfg samsung_s3c6410. cfg
amdm37x. cfg at91sam9263.cfg hilscher_netx500.cfg 1pc2900.cfg sharp_lh79532. cfg
ar71xx. cfg at91sams. cfg hilscher _netx50.cfg lpc2iwaot. cfg smdk6410. cfg
at32ap7000.cfg at91sam9gl0.cfg icepick.cfg lpc3131.cfg smp8634. cfg
at31r40008. cfg at91sam9g20.cfg imx21.cfg lpc3250.cfg spear 3xx. cfg
at31rm9200. cfg at91sam9g4s.cfg imx25.cfg mc13224v. cfg stellaris. cfg
at91sam3sXX. cfg at91samdrl.cfg imx27.cfg nuc910. cfg stm32. cfg
at31sam3ulc. cfg atmegal2f.cfg imx31.cfg omap2420. cfg stm32xl. cfg
at91sam3ule. cfg avr32.cfg imx35. cfg omap3530. cfg str710.cfg
at91sam3u2c. cfg c100. cfg imx51. cfg omap4d430. cfg str730.cfg
at31sam3u2e. cfg cl00config.tel imx.cfg omap5912. cfg str750. cfg
at91sam3udc. cfg cl00helper.tcl 1is5114.cfg omapl138.cfg str9i2. cfg
at31sam3ude. cfg cl00regs. tcl ixpd2x. cfg pic32mx. cfg swj-dp. tcl
at91sam3uXX. cfg cs351x. cfg lpc1768. cfg pxa255. cfg test_reset_syntax_error.cfg
at91sam3XXX. cfg davinci. cfg lpc2103.cfg pxa270.cfg test_syntax_error. cfg
at91sam7se512. cfg dragonite.cfg lpc2124.cfg pxa3xx. cfg ti_dm355. cfg
at91sam7sx. cfg dsp56321. cfg lpc2129.cfg samsung_s3c2410.cfg ti_dm365.cfg
at91sam7x256. cfg epc9301. cfg lpc2148. cfg samsung_s3c2440.cfg ti_dm6446.cfg
at91sam9260. cfg faux. cfg lpc2294. cfg samsung_s3c2450.cfg tmpagol. cfg
at91sam9260_ext_RAM_ext_flash.cfg feroceon.cfg lpc2378.cfg samsung_s3c4510.cfg tmpadll.cfg

SFO-ABS-JTAG-32 Copyright 2012, The PTR Group, Inc.

N 2T

What can OpenOCD do?

#In spite of the fact that it’s free, OpenOCD
is really quite full featured

#It supports erasing/programming
NOR/NAND flash segments

#Loading and debugging code on the
supported targets

#Accessing registers on the target
processor

#Working with PLD/FPGA devices
#Adding extensions via Tcl interface

SFO-ABS-JTAG-33

N 2T

Running OpenOCD

#0OpenOCD uses a stripped version of Tcl
(JIM-Tcl) at its core

» Knowing Tcl isn’t required, but it sure helps
#0penOCD uses a daemon to front end the
JTAG hardware interface
» You can access it via telnet at port 4444

#The OpenOCD command line allows you
to pass configuration files

» E.J., openocd -f interface/flyswatter.cfg \
-f board/ti beagleboard xm.cfg

SFO-ABS-JTAG-34 Copyright 2012, The PTR Group, Inc.

N 2T

The Telnet Interface

#From the telnet session you can exercise
a lot of control over the target

» reset, halt, load code, access registers,
dump/change memory, set
breakpoints/watchpoints, single-step
instructions and much more

#The telnet session also supports file I/0
for loading and dumping memory and Tcl
commands for scripting

SFO-ABS-JTAG-35 Copyright 2012, The PTR Group, Inc.

N 2T

GDB and OpenOCD

#GDB can connect to OpenOCD daemon via
“target remote” command to port 3333

» Another option is to use Linux pipes

#Supports the use of various GDB front-
ends such as DDD, Eclipse, SlickEdit,
Nemiver and others

#Use the GDB "mon” command to pass a
command to the OpenOCD daemon

» E.g., mon mdw 0x2100000 to dump memory
at 0x2100000

SFO-ABS-JTAG-36 Copyright 2012, The PTR Group, Inc.

N 2T

DDD GUI Front-End Example

M N o m comman ST
’\ VO rO O a File Edit ¥iew Program Commands Status Source Data Help |
0'|}na1’n 8 § EL5N o :
| | | | |] Lookup Find=» Break Watch Print Display Plot shiotyl Rotates Set Uhdisp
T+
I I e WI t ke r e I C O p I I e d *f Tinuxfarch/arm/kernel finit_task.c Iﬁ
* Fun
#include <linux/mm.h>
L] #include <linux/module.h>
#include <linux/fs.h>
#include <linuz/sched.h> J
#include <linux/init.h>
#include <linux/init_task.h>

#include

#include
#include

<linux/mqueue.h>

<asmfuaccess. h>»
<asm/pgtable.h:>

o
=,

Lol

struct fs_struct init_fs = INIT_FS:

struct files_struct init_files = INIT_FILES;

struct signal_struct init_signals = INIT_SIGHALS{init_signals);
struct sighand_struct init_sighand = INIT_SIGHAMD(init_sighand):
mr_struct init_mm = INIT_MMind t_mm);

static
static
static
static
struct

Uniclo | FRes

(2l (2 lEE]e
HIHLE

» Use the -debugger
command line option to

m
=

tdake

EXPORT_SYMBOL (i ni t_tom)

lf*
load the cross debugger i
#*
* We need to make sure that this is 8192-byte aligned due to the |
* way process stacks are handled. This is done by making sure
the linker maps this in the .text segment right after head.s,
ac e n - * and making head.S ensure the proper aligrment.

M

| | #*

The things we do for performance..

Y,

union thread_union init_thread_union

attribute ({__section__(".init.task"))] =

ddd -debugger
arm-linux-gdb vmlinux

#Then attach to JTAG
using “target remote”
command:

(gdb) target remote 127.0.0.1:3333

GHU DDD 3.3.11 (1386—suse-linux—gnu), by Dorothea Litkehaus and éndreas Zeller.
Copyright @ 1995-1999 Technische Universitit Braunschweig, Germany.

Copyright @ 1399-2001 Universitdt Passau, Germany.

Copyright @ 2001 Universitat des Saarlandes, Germany.

Eogﬁgivght © 2001-2004 Free Software Foundation, Inc.

gdb) ;

iT\L__________bh\

A Welcome to DDD 3.3.11 "Rhubark” (i386-suse-linux-gnu)

SFO-ABS-JTAG-37 Copyright 2012, The PTR Group, Inc.

Adding Device Driver Symbols

#Statically linked driver symbols are
already built into the kernel’s symbol
table

» Simply set break points on the driver
methods themselves

#Dynamically loaded drivers require
additional steps

» We need to find the addresses used by the
driver

#The next few charts assume you’re using
OpenOCD

SFO-ABS-JTAG-38 Copyright 2012, The PTR Group, Inc

N 2T

Debugging Loadable Modules

+# In order to debug a loaded module, we need to
tell the debugger where the module is in memory

» The module’s information is not in the kernel image
because that shows only statically-linked drivers
+# This information can typically be found in
/proc/modules OF
/sys/module/<modulename>/sections/. text
+# We then use the add-symbol-file GDB command
to add the debug symbols for the driver at the
address for the loaded module

» (gdb) add-symbol-file ./mydriver.o Ox<addr>

+# How we proceed depends on where we need to
debug

SFO-ABS-JTAG-39 Copyright 2012, The PTR Group, Inc.

N 2T

Debugging Loadable Modules #?2

#If we need to debug the __init code, we need to
set a breakpoint in the load_module() function

#We’ll need to breakpoint just before the control
is transferred to the module’s __init
» Somewhere around line 2981 of module.c:

/* Start the module */
if (mod->init '= NULL)
ret = do _one initcall (mod->init);

#0Once the breakpoint is encountered, we can
walk the module address list to find the
assigned address for the module

SFO-ABS-JTAG-40 Copyright 2012, The PTR Group, Inc.

N 2T

Adding Additional Breakpoints

#0nce you've added the module’s symbols,
you can set breakpoints at the various
entry points of the driver

(gdb) b mydriver read
#QOther good breakpoint locations include:
» sys sync
» panic
» oops_enter
#When you hit the breakpoint, the

debugger will drop to the source code
and you can start single stepping code

SFO-ABS-JTAG-41 Copyright 2012, The PTR Group, Inc

N 2T

Summary

#Despite its low cost, OpenOCD and simple
wiggler-style JTAG interfaces make a
powerful combination

» Support for a wide-variety of processors
» Support for Flash erasing/programming

» Supports debugging Linux kernel code using
standard GDB interface and techniques

#Unfortunately, there is no multi-core
support in OpenOCD yet

#However, for the developer on a budget,
OpenOCD is a great option

SFO-ABS-JTAG-42 Copyright 2012, The PTR Group, Inc.

N 2T

