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Background / Motivation

● Increasing desire to use mobile devices 
throughout the US government.

● Increasing interest in Android as an open 
platform with broad market adoption.

● Need for improved security in mobile 
operating systems.
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What is SE Android?

● A project to identify and address critical 
gaps in the security of Android.

● A reference implementation produced by 
the project.

● Initially, enabling and applying SELinux in 
Android.

● Not limited in scope to SELinux alone.
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SE Android is not...

● A government-specific Android.
● A fork of Android.
● A complete solution for all security 

concerns.
● A product.
● Specially evaluated or approved for use.
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SE Android is...

● Security enhancements to Android.
● Addressing platform security.

● Focused on critical gaps not otherwise being 
addressed.

● Designed for wide applicability.
● Targeting mainline Android adoption.
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SE Android: Use Cases

● Prevent privilege escalation by apps.

● Prevent data leakage by apps.

● Prevent bypass of security features.

● Enforce legal restrictions on data.

● Protect integrity of apps and data.

● Beneficial for consumers, businesses, and 
government.
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Android's Not Linux

● Very divergent from typical Linux.
● Almost everything above the kernel is 

different.
● Dalvik VM, application frameworks
● bionic, init/ueventd

● Even the kernel is different.
● Binder, Ashmem, ...
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Android Security Model
● Application-level permissions model.

● Controls access to app components.
● Controls access to system resources.
● Specified by app writers and seen by users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and from system.
● Prevent bypass of app permissions model.
● Normally invisible to users and app writers.
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Android & Kernel Security

● App isolation and sandboxing is enforced 
by the Linux kernel.
● The Dalvik VM is not a security boundary.
● Any app can run native code.

● Relies on Linux discretionary access 
control (DAC).
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Discretionary Access Control

● Typical form of access control in Linux.

● Access to data is entirely at the discretion of the 
owner/creator of the data.

● Some processes (e.g. uid 0) can override and 
some objects (e.g. sockets) are unchecked.

● Based on user & group identity.

● Limited granularity, coarse-grained privilege.
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Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, sdcard
● relies on kernel modifications

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.
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SELinux: What is it?

● Mandatory Access Control (MAC) for Linux.

● Enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.

● Even ones that run as “root” / uid 0.
● Can prevent privilege escalation.
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How can SELinux help 
Android?

● Confine privileged daemons.
● Protect from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.

● Strongly separate apps from one another.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.
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What can't SELinux mitigate?
● Kernel vulnerabilities, in general.

● Although it may block exploitation of specific 
vulnerabilities.

● Anything allowed by security policy.

● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.
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SE Android: Goals
● Integrate SELinux into Android in a 

comprehensive and coherent manner.

● Demonstrate useful security functionality in 
Android using SELinux.

● Improve the suitability of SELinux for Android.

● Identify and address other security gaps in 
Android.
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SE Android: Challenges
● Kernel

● No support for per-file security labeling (yaffs2).

● Unique kernel subsystems lack SELinux support.

● Userspace

● No existing SELinux support.

● All apps forked from the same process (zygote).

● Sharing through framework services.

● Policy

● Existing policies unsuited to Android.
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Kernel Support
● Enabled SELinux and its dependencies.

● AUDIT, XATTR, SECURITY
● Implemented per-file security labeling for yaffs2.

● Using recent support for extended attributes.
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.

● Permission checks on IPC operations.
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Userspace Support
● xattr and AT_SECURE support in bionic.

● Minimal port of SELinux libraries and tools.

● Labeling support in filesystem tools.

● Policy loading, device & socket labeling (init).

● App security labeling (zygote, dalvik, installd).

● JNI bindings for SELinux APIs.

● Management app.
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Policy Configuration
● Confined domains for system services.

● Small number of discrete domains for apps.

● MLS categories for app isolation.

● Key properties:

● Small, fixed policy.
● No policy writing for app developers.
● Invisible to users.
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Recent Advances

● Recovery console / updater support.
● Runtime policy management support.
● SELinux/MAC permission checks for init 

property service.
● Install-time MAC.
● Update to Android 4.1/JellyBean.
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Current State
● Working reference implementation.

● Based on Android Open Source Project 
(AOSP).

● Tracking ICS (4.0.4), JB (4.1.1), & master.
● Demonstrable on real devices.

● Nexus S, Galaxy Nexus phones
● Xoom and Nexus 7 tablets
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Size Comparison
(crespo4g, 4.0.4)
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AOSP SE 
Android

Increase

boot 3444K 3596K +152K

system 161692K 161816K +124K

recovery 3776K 3944K +168K



Size Comparison
(crespo4g, 4.1.1)
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AOSP SE 
Android

Increase

boot 3964K 4156K +192K

system 178780K 178904K +124K

recovery 4308K 4512K +204K



AnTuTu (crespo4g, 4.0.4)
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AnTuTu (crespo4g, 4.1.1)
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Softweg (crespo4g, 4.0.4)
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Softweg (crespo4g, 4.1.1)
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AOSP merging
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January
bionic

February
libselinux
libsepol
sepolicy
init
toolbox

March
make_ext4fs
recovery

April
checkpolicy
mkyaffs2image
build
recovery(*)
libselinux(*)
sepolicy(*)

June
installd
dalvik
zygote

August
Settings
init(*)
libselinux(*)
sepolicy(*)
build(*)

4.1/JB
forked



AOSP merge status

● Before 4.1 freeze: 12 changes merged.
● Since 4.1 freeze: 16 changes merged.
● Spanning 10 different projects. 
● 3 open changes pending.
● Not yet submitted: install-time MAC, 

kernel/*, device/*.
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Case Study: vold
● vold - Android volume daemon

● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from kernel.

● CVE-2011-1823
● Does not verify message origin.
● Uses signed integer without checking < 0.

● Demonstrated by GingerBreak exploit.
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GingerBreak: Overview
● Collect information needed for exploitation.

● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.

● Got root!
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GingerBreak vs SE Android

● Let's walk through it again with SE Android.

● Using the initial example policy we developed.

● Before we read about this vulnerability and 
exploit.

● Just based on normal Android operation and 
policy development.
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GingerBreak vs SE Android #1

● Identify the vold process.

● /proc/pid/cmdline of other domains denied by 
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes it based on 
some other means.
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GingerBreak vs SE Android #2

● Identify addresses and values of interest.

● /system/bin/vold denied by policy.
● /dev/log/main denied by policy.

● Existing exploit would fail here.

● Let's assume that exploit writer recodes exploit 
based on some other means.  
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GingerBreak vs SE Android #3

● Send netlink message to vold process.

● netlink socket create denied by policy
● Existing exploit would fail here.

● No way around this one - vulnerability can't be 
reached.

● Let's give the exploit writer a fighting chance 
and allow this permission.
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GingerBreak vs SE Android #4

● Trigger execution of exploit code by vold.

● execute of non-system binary denied by 
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes exploit to 
avoid executing a separate binary.
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GingerBreak vs SE Android #5

● Create a setuid-root shell.

● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.

● Let's give the exploit writer a fighting chance 
and allow these permissions.

37



GingerBreak vs SE Android #6

● Execute setuid-root shell.

● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.
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GingerBreak: Conclusion
● SE Android would have stopped the exploit six 

different ways.

● SE Android would have forced the exploit writer 
to tailor the exploit to the target.

● SE Android made the underlying vulnerability 
completely unreachable.
● And all vulnerabilities of the same type.
● e.g. Exploid exploit against ueventd.
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Case Study: /proc/pid/mem
● /proc/pid/mem

● Kernel interface for accessing process memory.
● Write access enabled in Linux 2.6.39+.

● CVE-2012-0056
● Incorrect permission checking.
● Induce setuid program into writing own memory.

● Demonstrated by mempodroid exploit.
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Mempodroid: Overview
● Some complexity omitted.

● Exploit invokes setuid root program with open fd 
to /proc/pid/mem as stderr and shellcode as 
argument.

● Setuid root program overwrites self with 
shellcode when writing error message.

● Shell code sets uid/gid to 0 and execs shell or 
command.
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Mempodroid vs SE Android
● Write to /proc/pid/mem will still succeed.
● But setuid root program runs in caller's 

security context (or policy-defined one).
● Still restricted by SELinux policy.
● No privilege escalation.

42



Other Root Exploits
● ueventd / Exploid, vold / zergRush

● similar to vold / GingerBreak

● adbd / RageAgainstTheCage, zygote / 
Zimperlich
● RLIMIT_NPROC setuid() failure

● ashmem / KillingInTheNameOf

● mprotect PROT_WRITE of property space
● Likewise blocked by SE Android.
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Case Study: Skype
● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption 
with world readable permissions.

– account balance, DOB, home address, contacts, chat 
logs, ...

● Any other app on the phone could read 
the user data.
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SE Android vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each 

application.

● MAC: Permissions are defined by the administrator 
and enforced for all applications.

● All apps denied read to files created by other 
apps.

● Each app and its files have a unique SELinux 
category set.
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Was the Skype vulnerability an 
isolated incident?

● Lookout Mobile Security
● LOOK-11-001

● Opera Mobile
● Cache Poisoning XAS

● Android SQLite Journal
● CVE-2011-3901
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Case Studies: Conclusion

● Android security would benefit from SE 
Android.
● Android needs Mandatory Access Controls 

(MAC).
● SE Android would have mitigated a number 

of Android exploits and vulnerabilities. 
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What's Next?

● Middleware MAC (MMAC).
● Device admin support for policy.
● Analyze other Android-specific drivers.
● Optimize SELinux for Android.
● Trusted input & display.
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Questions?
● http://selinuxproject.org/page/SEAndroid
● SELinux mailing list:

● selinux@tycho.nsa.gov

● NSA SE Android team:
● seandroid@tycho.nsa.gov

● My email:
● sds@tycho.nsa.gov
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