
Security Enhanced (SE)
Android

Stephen Smalley
Trusted Systems Research
National Security Agency

Background / Motivation

● Increasing desire to use mobile devices
throughout the US government.

● Increasing interest in Android as an open
platform with broad market adoption.

● Need for improved security in mobile
operating systems.

2

What is SE Android?

● A project to identify and address critical
gaps in the security of Android.

● A reference implementation produced by
the project.

● Initially, enabling and applying SELinux in
Android.

● Not limited in scope to SELinux alone.

3

SE Android is not...

● A government-specific Android.
● A fork of Android.
● A complete solution for all security

concerns.
● A product.
● Specially evaluated or approved for use.

4

SE Android is...

● Security enhancements to Android.
● Addressing platform security.

● Focused on critical gaps not otherwise being
addressed.

● Designed for wide applicability.
● Targeting mainline Android adoption.

5

SE Android: Use Cases

● Prevent privilege escalation by apps.

● Prevent data leakage by apps.

● Prevent bypass of security features.

● Enforce legal restrictions on data.

● Protect integrity of apps and data.

● Beneficial for consumers, businesses, and
government.

6

Android's Not Linux

● Very divergent from typical Linux.
● Almost everything above the kernel is

different.
● Dalvik VM, application frameworks
● bionic, init/ueventd

● Even the kernel is different.
● Binder, Ashmem, ...

7

Android Security Model
● Application-level permissions model.

● Controls access to app components.
● Controls access to system resources.
● Specified by app writers and seen by users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and from system.
● Prevent bypass of app permissions model.
● Normally invisible to users and app writers.

8

Android & Kernel Security

● App isolation and sandboxing is enforced
by the Linux kernel.
● The Dalvik VM is not a security boundary.
● Any app can run native code.

● Relies on Linux discretionary access
control (DAC).

9

Discretionary Access Control

● Typical form of access control in Linux.

● Access to data is entirely at the discretion of the
owner/creator of the data.

● Some processes (e.g. uid 0) can override and
some objects (e.g. sockets) are unchecked.

● Based on user & group identity.

● Limited granularity, coarse-grained privilege.

10

Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, sdcard
● relies on kernel modifications

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.

11

SELinux: What is it?

● Mandatory Access Control (MAC) for Linux.

● Enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.

● Even ones that run as “root” / uid 0.
● Can prevent privilege escalation.

12

How can SELinux help
Android?

● Confine privileged daemons.
● Protect from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.

● Strongly separate apps from one another.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.

13

What can't SELinux mitigate?
● Kernel vulnerabilities, in general.

● Although it may block exploitation of specific
vulnerabilities.

● Anything allowed by security policy.

● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.

14

SE Android: Goals
● Integrate SELinux into Android in a

comprehensive and coherent manner.

● Demonstrate useful security functionality in
Android using SELinux.

● Improve the suitability of SELinux for Android.

● Identify and address other security gaps in
Android.

15

SE Android: Challenges
● Kernel

● No support for per-file security labeling (yaffs2).

● Unique kernel subsystems lack SELinux support.

● Userspace

● No existing SELinux support.

● All apps forked from the same process (zygote).

● Sharing through framework services.

● Policy

● Existing policies unsuited to Android.

16

Kernel Support
● Enabled SELinux and its dependencies.

● AUDIT, XATTR, SECURITY
● Implemented per-file security labeling for yaffs2.

● Using recent support for extended attributes.
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.

● Permission checks on IPC operations.

17

Userspace Support
● xattr and AT_SECURE support in bionic.

● Minimal port of SELinux libraries and tools.

● Labeling support in filesystem tools.

● Policy loading, device & socket labeling (init).

● App security labeling (zygote, dalvik, installd).

● JNI bindings for SELinux APIs.

● Management app.

18

Policy Configuration
● Confined domains for system services.

● Small number of discrete domains for apps.

● MLS categories for app isolation.

● Key properties:

● Small, fixed policy.
● No policy writing for app developers.
● Invisible to users.

19

Recent Advances

● Recovery console / updater support.
● Runtime policy management support.
● SELinux/MAC permission checks for init

property service.
● Install-time MAC.
● Update to Android 4.1/JellyBean.

20

Current State
● Working reference implementation.

● Based on Android Open Source Project
(AOSP).

● Tracking ICS (4.0.4), JB (4.1.1), & master.
● Demonstrable on real devices.

● Nexus S, Galaxy Nexus phones
● Xoom and Nexus 7 tablets

21

Size Comparison
(crespo4g, 4.0.4)

22

AOSP SE
Android

Increase

boot 3444K 3596K +152K

system 161692K 161816K +124K

recovery 3776K 3944K +168K

Size Comparison
(crespo4g, 4.1.1)

23

AOSP SE
Android

Increase

boot 3964K 4156K +192K

system 178780K 178904K +124K

recovery 4308K 4512K +204K

AnTuTu (crespo4g, 4.0.4)

24

Memory
Integer

Float
Score2D

Score3D
SDRead

SDWrite
Database

0

200

400

600

800

1000

1200

AOSP

SE Android

AnTuTu (crespo4g, 4.1.1)

25

Memory
Integer

Float
Score2D

Score3D
SDRead

SDWrite
Database

0

200

400

600

800

1000

1200

AOSP

SE Android

Softweg (crespo4g, 4.0.4)

Memory CPU Graphics Filesystem
0

200

400

600

800

1000

1200

1400

1600

1800

AOSP

SE Android

Softweg (crespo4g, 4.1.1)

Memory CPU Graphics Filesystem
0

200

400

600

800

1000

1200

1400

1600

AOSP

SE Android

AOSP merging

28

January
bionic

February
libselinux
libsepol
sepolicy
init
toolbox

March
make_ext4fs
recovery

April
checkpolicy
mkyaffs2image
build
recovery(*)
libselinux(*)
sepolicy(*)

June
installd
dalvik
zygote

August
Settings
init(*)
libselinux(*)
sepolicy(*)
build(*)

4.1/JB
forked

AOSP merge status

● Before 4.1 freeze: 12 changes merged.
● Since 4.1 freeze: 16 changes merged.
● Spanning 10 different projects.
● 3 open changes pending.
● Not yet submitted: install-time MAC,

kernel/*, device/*.

29

Case Study: vold
● vold - Android volume daemon

● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from kernel.

● CVE-2011-1823
● Does not verify message origin.
● Uses signed integer without checking < 0.

● Demonstrated by GingerBreak exploit.

30

GingerBreak: Overview
● Collect information needed for exploitation.

● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.

● Got root!
31

GingerBreak vs SE Android

● Let's walk through it again with SE Android.

● Using the initial example policy we developed.

● Before we read about this vulnerability and
exploit.

● Just based on normal Android operation and
policy development.

32

GingerBreak vs SE Android #1

● Identify the vold process.

● /proc/pid/cmdline of other domains denied by
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes it based on
some other means.

33

GingerBreak vs SE Android #2

● Identify addresses and values of interest.

● /system/bin/vold denied by policy.
● /dev/log/main denied by policy.

● Existing exploit would fail here.

● Let's assume that exploit writer recodes exploit
based on some other means.

34

GingerBreak vs SE Android #3

● Send netlink message to vold process.

● netlink socket create denied by policy
● Existing exploit would fail here.

● No way around this one - vulnerability can't be
reached.

● Let's give the exploit writer a fighting chance
and allow this permission.

35

GingerBreak vs SE Android #4

● Trigger execution of exploit code by vold.

● execute of non-system binary denied by
policy

● Existing exploit would fail here.

● Let's assume exploit writer recodes exploit to
avoid executing a separate binary.

36

GingerBreak vs SE Android #5

● Create a setuid-root shell.

● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.

● Let's give the exploit writer a fighting chance
and allow these permissions.

37

GingerBreak vs SE Android #6

● Execute setuid-root shell.

● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.

38

GingerBreak: Conclusion
● SE Android would have stopped the exploit six

different ways.

● SE Android would have forced the exploit writer
to tailor the exploit to the target.

● SE Android made the underlying vulnerability
completely unreachable.
● And all vulnerabilities of the same type.
● e.g. Exploid exploit against ueventd.

39

Case Study: /proc/pid/mem
● /proc/pid/mem

● Kernel interface for accessing process memory.
● Write access enabled in Linux 2.6.39+.

● CVE-2012-0056
● Incorrect permission checking.
● Induce setuid program into writing own memory.

● Demonstrated by mempodroid exploit.

40

Mempodroid: Overview
● Some complexity omitted.

● Exploit invokes setuid root program with open fd
to /proc/pid/mem as stderr and shellcode as
argument.

● Setuid root program overwrites self with
shellcode when writing error message.

● Shell code sets uid/gid to 0 and execs shell or
command.

41

Mempodroid vs SE Android
● Write to /proc/pid/mem will still succeed.
● But setuid root program runs in caller's

security context (or policy-defined one).
● Still restricted by SELinux policy.
● No privilege escalation.

42

Other Root Exploits
● ueventd / Exploid, vold / zergRush

● similar to vold / GingerBreak

● adbd / RageAgainstTheCage, zygote /
Zimperlich
● RLIMIT_NPROC setuid() failure

● ashmem / KillingInTheNameOf

● mprotect PROT_WRITE of property space
● Likewise blocked by SE Android.

43

Case Study: Skype
● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption
with world readable permissions.

– account balance, DOB, home address, contacts, chat
logs, ...

● Any other app on the phone could read
the user data.

44

SE Android vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each

application.

● MAC: Permissions are defined by the administrator
and enforced for all applications.

● All apps denied read to files created by other
apps.

● Each app and its files have a unique SELinux
category set.

45

Was the Skype vulnerability an
isolated incident?

● Lookout Mobile Security
● LOOK-11-001

● Opera Mobile
● Cache Poisoning XAS

● Android SQLite Journal
● CVE-2011-3901

46

Case Studies: Conclusion

● Android security would benefit from SE
Android.
● Android needs Mandatory Access Controls

(MAC).
● SE Android would have mitigated a number

of Android exploits and vulnerabilities.

47

What's Next?

● Middleware MAC (MMAC).
● Device admin support for policy.
● Analyze other Android-specific drivers.
● Optimize SELinux for Android.
● Trusted input & display.

48

Questions?
● http://selinuxproject.org/page/SEAndroid
● SELinux mailing list:

● selinux@tycho.nsa.gov

● NSA SE Android team:
● seandroid@tycho.nsa.gov

● My email:
● sds@tycho.nsa.gov

49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide_6
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

