Hardware Accelerated 2D
Rendering for Android

Jim Huang (F=AEE) <jserv@0xlab.org>

Developer, Oxlab

Feb 19, 2013 / Android Builders Summit

Rights to copy

© Copyright 2013 Oxlab
http://Oxlab.org/

contact@Oxlab.org

Attribution — ShareAlike 3.0
You are free

¢ to copy, distribute, display, and perform the work

¢ to make derivative works Latest update: Feb 19, 2013
¢ to make commercial use of the work

Under the following conditions

@ Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
@ resulting work only under a license identical to this one.

¢ For any reuse or distribution, you must make clear to others the license terms of this work.
¢ Any of these conditions can be waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode
e
\
A }

Corrections, suggestions, contributions and translations
are welcome!

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Agenda (1) Concepts

(2) Performance Problems
(3) Hardware Accelerafing

Case study: skia, webkit

A

Concepfs
Graphic Toolkit, Rendering, GPU operations

A

Revise what you saw on Android

Dworsky home

E

echo sip server

echobot
Edward Gold

y
Eitan

V|

Q

—xporting Graphics

- can be exported from any of the levels of the graphics stack
— Application, Graphic Toolkit, Graphic Rendering, Bitmapped Device

"~ R
Examples API
contact manager ,
web browser App“catlon zz;:;;t ontr
mail reader — y()
Android Toolkit LinearLayout ()
Qt, GTK Graphlc Toolkit Button ()
iOS UI kit Menu ()
X11. Cai save ()
> .alro drawText ()
Android Canvas Graphlc Renderlng drawBitmap ()
Skia, OpenGL retore() P
compiz ComposeWindow ()
SurfaceFlinger [Bltmapped Device J Refresh ()
\ J

—xporting Graphics - Application

- Normal way Linux/Android/Iphone runs apps.
— The application itself is exported and run locally.

[Examples API

contact manager
web browser
mail reader

main()
contact entry()

Application

¢

) _ LinearLayout ()
Graphic Toolkit } Button ()

Android Toolkit
Qt, GTK
10S UI kit

Menu ()

Graphic Rendering

save ()
drawText ()
drawBitmap()
retore()

X11, Cairo
Android Canvas
Skia, OpenGL

¢

Bitmapped Device

compiz
SurfaceFlinger

ComposeWindow ()
Refresh ()

N N N Y

—xporting Graphics - Toolkit

Technically very complex. Android has 15 different toolkit API variants.

Every application can extend the toolkit with custom widgets
(subclasses of android.view.View).

—xporting Graphics - Rendering

Exports graphics at the rendering level.

In Android there are a number of rendering interfaces that can be used:
— skia graphics

— OpenGL ES 1.1 or OpenGL ES 2.0
— Android.view.View \\
y

//l}

2D Graphics

The display presents us the contents of something called the
framebuffer.

The framebuffer is an area in (V)RAM

For each pixel on screen there's a corresponding memory cell in the
framebuffer

Pixels are addressed with 2D coordinates.

color[] vram = new color[3*2];

vram[0] vram[1] vram[2] vram[3] vram[4] vram[5]

0.1)

2D Graphics

To change what is displayed — change the colors of pixels in (V)RAM.
— Pixel colors are encoded as RGB or RGBA

To draw shapes — need to figure out which framebuffer pixels we have
to set.
— Images (bitmaps) are not special either

— Pixels of the bitmap get stored in a memory area, just like we store
framebuffer pixels.

To draw a bitmap to the framebuffer — copy the pixels. (Blitting)

We can perform the same operations on bitmaps as we perform on the
framebuffer, e.g. draw shapes or other bitmaps.
72
/ \

//,}

Blitfing: copy (parfs of) one bitmap fo another

Alpha Compositing: blmmq + alpha blending

Alpha value of a pixel
governs transparency

* Instead of overwritting a
destination pixel we mix its
color with the source pixel.

A

Source: Android Game Development 101, BadlogicGames 4y /}

Application

A

Y

Graphic Toolkit

A
Y

Ab

stract Renderer | class canvas

P
Hardware Renderin
(OpenGl 2.0)

“
gw Software Rendering

Android Graphics Stack

‘ Bitmapped Device ’

(SKIA)
—(Data Graphic
Volume Data Source
{ Application } Apps, Android Market
00X)
{ Graphic Toolkit } Class View, Widgets
10X 0
Graphic Rendering Class Canvas
| Skia, OpenGL ES
100X)
{ Bitmapped Device } Device Framebuffer

Rendering Level: skia

- The rendering level is the graphics layer that
actually “colors” the pixels in the bitmap.

- skia is a compact open source graphics library
written in C++.

« Currently used in Google Chrome, Chrome OS,
and Android.

0

‘ Skia is Greek for “shadow” I b }

Rendering Level: skia

skia is a complete 2D graphic library for drawing
Text, Geometries, and Images. Features include:
— 3x3 matrices w/ perspective

— Antialiasing, transparency, filters
— Shaders, xfermodes, maskfilters, patheffects

A

//l}

Rendering Level: skia

- Each skia call has two components:
— the primitive being drawing

(SkRect, SkPath, etc.)
— color/style attributes (SkPaint)

- Usage example:
canvas.save () ;

canvas.rotate (45) ;
canvas.drawRect (rect, paint);
canvas.drawText (Yabc”, 3, x, vy, paint);
canvas.restore () ; A
/ \

//,}

WebKit in Android

WebCore

K

Refresh the surface
(expose event)

/ Android.webkit.WebViewCore |

Skia bridge

android.webkit. WebView

WebKit

—

L A |)

- i

_‘

CPU vs. GPU Limited at Rendering

Tasks over lime

100%

90%

80%

70%

60%

50% -

40% -

30% -

20% -

10% -

[| | @ GPU
B CPU

0% -
8 1999 2000 20 20!

100%
90%
80% -
70% -
60%
50% -
40% -
30% -
20% -
10% -

0% -
199

11 1 1 | [[| [|
2
©

©
e ! ! | | | |
N
o

o
e 1!t 1 ! | [[| [|
N
o

o
et ! ! | | | |

4
s ! ! ! | | | |
N
(=]

A
3
st 1 1 1 | [[| [|
o
S
N

O GPU
m CPU

Pipelined 3D Interactive Rendering

Path Rendering

Goal of NV _path_rendering is to make path rendering a GPU-limited task
Render all interactive pixels, whether 3D or 2D or web content with the GPU

0

‘ Source: GPU-Accelerated 2D and Web Rendering, Mark Kilgard, NVIDIA I dd

Rendering Patfhs

| skia + gpu; Chrome browser |

JavaScript OpenGLES CPU GPU
(Canvas) pen | |
Computing
Draw Call Draw Call Context
3 3 Computing
Draw Call : : Draw Call Context
Computinn
Draw Call Draw Call ~
| | ‘ c“
Draw Call Draw Call \e“e
| ‘ ?‘ Bo“.
Computing
Draw Call Draw Call

Context

Rendering Patfhs

| ideal case |

JavaScript
(Canvas)

GL request OpenGL ES CPU GPU
Optimizer

Draw Call
Draw Call
Draw Call

Computing
Draw Call | Context

Draw Call

skia + gpu

- Problems
— calls gIDrawSomethings too many times

— changes gl states too many times
— switches FBO too many times
— vector graphics APls and shadows are really slow

- Increases dramatically CPU overhead

Bitmap Sprite Good Good
Convex Path Good
Concave Path Good N
Bitmap Sprite + Path Good B
Path + Different Shadow Good y
Text + Different Draw Call Good 44 }

The performance problem is stil
rendering...

Lef's look into deeper.

Hardware Accelerating

How Android utilizes GPU functionalities

Myths and Facts

- Myth: Android 1.x is slow because of no
hardware accelerations
— NOT TRUE! window compositing utilizes
hardware accelerations.

— But it is quite constrained

- There are 4 Window: Status Bar, Wallpaper,
Launcher, and Menu in the right screenshot.
— Hardware composites animations of Activity
transition, the fading in/out of Menu.

- However, the content of Window (Canvas) is
being accelerated by hardware since Android 3.x

View & TextureView

- View
— represents the basic building block for Ul
— occupies a rectangular area on the screen and is
responsible for drawing and event handling.

- SurfaceView
— provides a dedicated drawing surface embedded inside of
a view hierarchy.

« TextureView
— Since Android 4.0
— Only activated when hardware acceleration is enabled !

— has the same property of SurfaceView, but you can create
GL surface and perform GL rendering above them. A
/ \

//,}

from EGL to Surfaceflinger

OpenGL ES Real3D surface 2D surface

;) . 4

EGL "_— ~ Surfaceflinger

!

. Frame Buffer

!

Surface | | Hardware Abstraction Layer

Frame Buffer l
iilﬂ 3:56 AM \ Final Image_J

android software
OpenGL|ES renderer

hardware
OpenGL|ES

Pixel

GPU Flinger

Flinger

4)

| | | :

: m_.,u OpenGL ES : i SurfaceFlinger::instantiate()

E - = . : - AddSevice("Surface Flinger”..)

: hgl . agl i

i p Finger - SurfaceFlinger::readyToRun()

: Surfate . I :

; . j : giztir ggt gxutegiéﬂgﬁd Map Frame Buffer

- Create our OpenGL ES context
- Gather OpenGL ES extensions
- Init Display Hardware for GPU

SurfaceFlinger::threadLoop()

- Wait for Event

- Check for tranaction

- Post Surface (if needed)
- Post FrameBuffer ...

Surface
Surface
| OpenGL ES

| foL Surface
Flinger

higl

-
: Piwazl
GPU ‘ Fli':u' |
Surface
Surface N

Application (View)
Render Application [View]
Script Canvas F?Secr‘;;:éetr P
HWUI OpenGL Es it (View]
OpenGL ES EGL Skia Canvas
AGL HGL I
EGL Skia Pixel Flinger GPU
AGL HGL Surface __ Skia
]I AL HGL
Pixel Flinger GPU / Fixel Finger GPU
Surface S
SurfaceFlinger
OpenGL ES
HW EGL
Composer HGL AGL
GPU Pixel Flinger
Overlay Frame Buffer
N
4

//1.}

Case sfudy: skia

Paint, Canvas, Backend

skia, again

Drawing basic primitives include rectangles, rounded rectangles, ovals, circles,

arcs, paths, lines, text, bitmaps and sprites. Paths allow for the creation of more
advanced shapes.

Canvas encapsulates all of the state about
" Drawing drawing into a device (bitmap).

Primitives .-
Canvas H Bitmap

While Canvas holds the state of the drawing device, the state (style) of the
object being drawn is held by Paint, which is provided as a parameter to
each of the draw() methods. Paint holds attributes such as color, typeface,
textSize, strokeWidth, shader (e.g. gradients, patterns), etc.

‘ Paint

0

//l}

skia rendering pipeline

Rasterization memsmeneeereeams e emn ey --- Shading ---------- :
SkCanvas ~ . .
draw*(..., SkPaint) / I Apply ‘
- Scan] ; 5 Shaders
l | Conversion .
‘ Initial Path . "y | | Initial
Initial Mask [Rasterizer ‘ : SRC Image
‘ Apply T $; Apply §
Path TﬁEC’IS Mask Filters ’ ' Color Filters i
‘. i _’_1, 1 :
; Stroke Styles [— | SRC Image ‘
Path Generuﬁ{n """"""
_ Transfer
l . Blendin | Intermediate | Apply ‘
- Image | \ XferMode
Modified |
‘ DST Image | D3] Image ‘
4
Source: http://www.xenomachina.com/2011/05/androids-2d-canvas-rendering-pipeline.html 44 }

Skia backends

. Render in Software | SkCanvas ’—) SkDevice H SkBitmap ‘
— create a native window and then

— wrap a pointer to its buffer as an SkBitmap

— Initialize an SkCanvas with the bitmap
« Render in hardware acceleration
— create a GLES2 window or framebuffer and

— create the appropriate GrContext, SkGpuDevice, and
SkGpuCanvas

SkGpuCanvas P SkGpuDevice }—>{ GrContext ‘

libskia.so

7

libs usof~ """ ‘\\

libEGL.so
s

bGLESvZ 50 [=--"—~ 2
rll k\.
i |

libcufils.so libufils.so

/ll)

How Views are Drawn |Android 2 .x]

CPU Rasterization + GPU Composition

ViewRootimpl View View Canvas
performDraw() draw(Canvas) onDraw(Canvas) draw*(..., Paint)

Android Framework (android.jar)

SkCanvasGlue
draw®(..., SkPaint)

libandroid _runtime.so

SkRasterizer
rasterize(...
e SkDraw SkDevice SkCanvas
draw®(..., SkPaint, ...) draw®(..., SkPaint, ...) draw®(..., SkPaint)
SkBlitter
blit*(...)
libskia.so
_»
4

Hardware-accelerated 2D Rendering

- Since Android 3.x, more complex than before!

- Major idea: transform the implementation of 2D Graphics
APls into OpenGL|ES requests

- Texture, Shader, GLContext, pipeline, ...

- Major parts for hardware-accelerated 2D Rendering
— Primitive Drawing: Shape, Text,Image

— Layer/Surface Compositing

Confrol hardware accelerations

Application level

<application android:hardwareAccelerated="true">
— Default value
e False in Android 3.x, True in Android 4.x

Activity
Window
WindowManager.LayoutParams.FLAG HARDWARE ACCELERATED

View
— setLayerType(View.LAYER;TYPE_SOFTWARE,null)

View. setLayerType (int type,Paint p)

-QO
Layers = Off-screen Buffers or Caches l \
y

//l}

View Layers since Android 3.x

type View is View is NOT
H/W-Accelerated H/W Accelerated

LAYER_TYPE_NONE « Renderedin H/W * Renderedin §/W
« Directly into surface Directly into surface

LAYER_TYPE_HARDWARE -+ Renderedin H/W Rendered in S/W
* Into hardware texture Into bitmap

LAYER_TYPE SOFTWARE » Renderedin S/W Rendered in S/W
* Info bitmap * Info bitmap

Hardware layer DisplayList Software

Time in ms

‘Measured when drawing a ListView with Android 3.0 on

DisplayList::0p a Motorola XOOM

+ DrawLayer
+ DrawBitmap

‘ Source:Accelerated Android Rendering, Google 1/0 2011 I

How Views are Drawn |Android 3 .x]

android:handwareAccelerated="true"

GPU Rasterization + GPU Composition

ViewRootimpl View View
performDraw() draw(Canvas) onDraw(Canvas)

HardwareCanvas
| draw®(..., Paint)

Android Framework (android.jar)

libandroid_runtime.so

HardwareCanvas — SkPaint = GLRenderer
no SkGpuCanvas/SkGpuDevice?!

libhwui.so

Why can't skia use its OpenGL
backend directly?

libGLESv2.50

|

android view GLES20Canvas
_draw?*(..., SkPaint)

|

OpenGLRenderer
draw®(..., SkPaint)

____________________ j

GLES2/gl2.h
glXXX(...)

(

/]I)

1o answer the previous question, we have o

learn Display List first

- A display list (or display file) is a series of graphics
commands that define an output image. The image is
created (rendered) by executing the commands.

- A display list can represent both two- and three-dimensional
scenes.

- Systems that make use of a display list to store the scene
are called retained mode systems as opposed to immediate
mode systems.

Application —————= Graphics Library — ——p
Application ——————m= Graphics Library ——pm % Drawing
Drawing Commands
Commands Update

Update |

—

+ [-cai—
'f [calm—
P L5
—)
()
Scene (Model)
Scene (Model) B \
http://en.wikipedia.org/wiki/Display _list d \
http://developer.android.com/guide/topics/graphics/hardware-accel.html b)

GLES20RecordingCanvas

| draw®(..., Paint)

void* buffer

K SkReader32

SkWriter32
write*|...)

read®()

GLES20Canvas
drawDisplaylList(...)

—

F.

android view

GLES20Canvas_draw*(...)

|

DisplaylistRenderer
draw®(..., SkPaint)

DisplaylList
replay/(...)

|

OpenGLRenderer
drawDisplaylList(...)

Display List [Android 3.x|

<<gnumerations>
Displaylist:Op[Non- Drawing]

+Save

+Restore
+RestoreToCount
+5aveloyer
+5avelaoyerapha
+Translate
+Rotate

+5cale

+5kew
+hetmalric
+Concat Malrid
+ClipRect

N draw®(..., SkPaint)

GLES2/gl2.h
gIXXX(...)

- Adisplay list records a series of graphics related operation and can replay
them later. Display lists are usually built by recording operations on a

android.graphics.Canvas.

- Replaying the operations from a display list avoids executing views drawing

code on every frame, and is thus much more efficient.

<<gnumerafion==

Displaylist::Op[Drawing]

+Drarw Disp oy List
+Drawlayer
HrawBitmap
HIrawBitmap Mo trix
Hrawbitmap Rect
HIrawBitmap Data
+HrawBitmap Mesh
+DrawPatch
HrawCalor
+Drawkect
+DrawRoundRect
HirmawCircle
HIraw Oy al
HIrorw Arc
+DrawPath
+Drawlines
+DrawPaints
oo T exd
+tDrawTextCnPath
Horcrwe PoosT exc

+R esels haoder
+5etups hoder

+ esetColarb ber
+5etupColaFilter
+h esets hodow
+5etups hodow

+R esetP aintflter
t5etupPaintfilter
+DrawGLFunclion

Q

y

/]l}

+ 4+ +++ +F A+ A+

Display List [Android 4.1]

DLProps

Display
List

Draw
DisplayList

‘ Update ‘ Draw

RS - ‘ DisplayList ' DisplayList

VSync
. Without DisplayList . With DisplaylList
bool mClipChildren; Properties Properties
float mAlpha;
int mMultipliedAlpha;
bool mHasOverappingRendering; :

float mTranslationX, mTranslationY;

float mRotation, mRotationX, mRotationY;

float mScaleX, mScaleY;

float mPivotX, mPivotY: 3
float mCameraDistance;

int mLeft, mTop, mRight, mBottom;
int mWidth, mHeight;

int mPrevWidth, mPrevHeight;
bool mPivotExplicitlySet;

bool mMathixDirty;

bool mMatrxlsidentity;

uint32_t mMatrixFlags:

SkMatrix* mTransformmatnix; o
Sk3DView* mTransformCamera;
SkMatrix* mTransformMatnix3D;
SkMatrix* mStaticMatrix;

Skmatrix* mAnimationMatrix;
bool mCaching; ‘ Source:For Butter or Worse, Google 1/0 2012 I

Time in ms

Case study: webkit

RenderObjects, Renderlree, RenderlLayers,
Accelerated Compositing, Rendering Flow, Tiled Texture

WebKit Rendering

- RenderObjects
- RenderTree
- RenderLayers

WebKit Rendering - RenderObject

Each node in the DOM tree that produces visual
output has a corresponding RenderObject.

RenderObjects are stored in a parallel tree
structure, called the Render Tree.

RenderObject knows how to present (paint) the
contents of the Node on a display surface.

It does so by issuing the necessary draw calls to
the GraphicsContext associated with the page

renderer.
— GraphicsContext is ultimately responsible for writing the
pixels on the bitmap that gets displayed to the screen.

A

//,}

WebKit Rendering - Renderlree

RenderObijects are stored in a parallel tree structure, called
Render Tree.

<html xmins="http://www.w3.0rg/1999/xhtml" >
<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />
<title >transform example </title>
</head>
<style type="text/css">
div{
width: 300px;
margin: 150px auto;
background-color: yellow;
text-align: center;
-webkit-transform: rotate(45deg);

RenderView BF at (0,0) size 1600x781
RenderBlock BF Rt {HTML} at (0,0) size 16002320
RenderBody BF {BODY} at (8,150) size 1584x20 [bgcolor=#008000]
-moz-transform: rotate(45deg); RenderBlock CI BF {[{DIV} at {6;2,&}: size 300x20 [bgcolor=#FFFF00]
-G-transfr:}rrn:rutate{45deg‘j; RenderText {#text} at (108,0) size 842109
} text run at (108,0) width B4: "Example Text"
body{
background-color: green;
}
</style>
<body>
<div>Example Text</div> B \
</body>
</html>

//1.}

WebKit Rendering - RenderlLayers

- Each RenderObject is associated with a
RenderlLayer either directly or indirectly via an
ancestor RenderObiject.

- RenderObjects that share the same coordinate
space (e.g. are affected by the same CSS
transform) typically belong to the same
RenderlLayer.

- RenderlLayers exist so that the elements of the
page are composited in the correct order to
properly display overlapping content,
semitransparent elements, etc.

-QO

\

//l}

RenderlLayers

- In general a RenderObject warrants the creation of
a RenderLayer if
— Is the root object for the page

— has explicit CSS position properties (relative,
absolute or a ransform)

— Is transparent
— has overflow, an alpha mask or reflection

— Corresponds to <canvas> element that has a 3D
(WebGL) context Corresponds to a <video>
element

<Layer> at (0,0) size 1600x781 - RenderView BF at (0,0) size 1600x781 4\\\

<Layer> at ({(0,0) size 1600x320 - RenderBlock BF Rt {[HTML} at (0,0) size 18600x320 /)
Llayer> at (650,150) size 300x20 - RenderBlock CI BF {DIV] at (642,0) =zize 300x20 [bgcolor=#FFFF0{] I

WebKit Rendering

RenderLayer hierarchy is traversed recursively starting from
the root and the bulk of the work is done in
RenderLayer::paintLayer().

WebView is the web page encapsulated in a Ul component.

Web page update — the redraw of WebView
— Adjust layers structure according to the latest content
and then render/record the updated

— Render the updated content

Various approaches of Rendering Architecture
— Use texture or vector (backing store) as the internal
representation

— multithreaded, multiple processes.
Q
/ \

//l}

Accelerated Composifing

- |dea: to optimize for cases where an element would
be painted to the screen multiple times without its

content changing.
— For example, a menu sliding into the screen, or a

static toolbar on top of a video.

- |t does so by creating a scene graph, a tree of
objects (graphics layers), which have properties
attached to them - transformation matrix, opacity,
position, effects etc., and also a notification when
the layer's content needs to be re-rendered.
0
\

//,}

Elements = Layers

Fall leaves are beautiful...
on someone else’s lawn.

Dino’s Lawn Care
T 555-2143

- When accelerated compositing is enabled, some (but not
all) of the RenderLayer's get their own backing surface
(compositing layer) into which they paint instead of drawing
directly into the common bitmap for the page.

- Compositor is responsible for applying the necessary
transformations (as specified by the layer's CSS transform
properties) to each layer before compositing it.

Fall braves are beautiful. .
ot someone else’s lawn. *

DHino's Lawn Care
13 5552143

- Since painting of the layers is decoupled from compositing, .
iInvalidating one of these layers only results in repainting the £
contents of that layer alone and recompositing. y

4 |

)

Rendering Flow

- Layers Sync
— done by WebCore itself

- Layers Compositing
— done by WebKit port (like Android)

- Android 4.x supports Accelerated Compositing and
Hardware Accelerations

— decided by the property of given Canvas

A

//,}

| skia + gpu; Chrome browser |

JavaScript

(Canvas) OpenGLES CPU - GPU
Draw Call Draw Call Cgr;lrr])tl;t)i:g
Computing
Draw Call Draw Call Context
‘ ‘ Computine
Draw Call ‘ ‘ Draw Call ~
‘ | cK Flush
Draw Call Draw Call =3} flene
| | = 8o
‘ 1 Computing
Draw Call ‘ ‘ Draw Call

Context

* When WebView is redrawn, Ul thread performans compositing
— First, TiledTexture in Root Layer of current Page ViewPort

— Then, TiledTexture in other BackingLayers

* The generation of TiledTexture can utilize both CPU and GPU.
— Android 4.0 still uses CPU.

Flow of Generating Tiled Texture

- Using CPU
— Take one global SkBitmap and reset (size equals to one
Tile)

— Draw SkPicture — global SkBitmap
— Memory copy from SkBitmap to Graphics Buffer of Tile
. Using GPU
— All real rendering occurs in TextureGenerator thread
— Draw the pre-gernated textures
Page — vector backing store, layer — texture

A

//l}

lTechniques fo make it befter

~ GLrequest =~ OpenGLES CPU GPU
| Optimizer | |

JavaScript
(Canvas)

Draw Call
Draw Call

Draw Call
Computing

Draw Call Context

Draw Call

* Improve object lifetime management

* Use GPU specific Backing store implementation
* prefetch optimization for DOM Tree Traversal

* Improve texture sharing mechanisms

* Eliminate the loading of U thread

Surfacerlinger

- Android‘s window compositor
— Each window is also a layer.

— The layers are sorted by Z-order. The Z-order is just the layer
type as specified in PhoneWindowManager.java.

- When adding a layer with a Z-order that is already used
by some other layer in SurfaceFlinger's list of layers it is
put on top of the layers with the same Z-order.

- Even many SurfaceFlinger rendering operations are

inherently flat (2D), it uses OpenGL ES 1.1 for rendering
— May be memory limited on devices with small displays

— Copybit acceleration may be desirable for Ul on some devices
— deprecated since Android 2.3

— It is known to improve UX with custom copybit module 0
A

//,}

low-level) overhead

- Composition overhead
— Android extensions such as “EGLImage from Android native
buffer”, can employ copybit (2D) backend to further offload GPU

— use non-linear textures for 3D applications to improve memory
access locality
- Native <> Java communication overhead
— Native code for key operations
— Can be observed by TraceView tool
- Cache management overhead
— range-based L1 and L2 cache functions (clean, invalidate, flush)

— Normally uncached graphics memory is sufficient for gaming use
cases

— Cached buffers result in higher performance for CPU rendering N
in compositing systems \
4

//l}

Performance Tips

- Display List is crucial to user experience, but it has
to be scheduled properly, otherwise CPU loading
gets high unexpectedly.

- Always verify and probe graphics system using
Strict Mode

- When hardware acceleration is enable, prevent the
following operations from being modified/created

frequently:
— Bitmap, Shape, Paint, Path

A

//l}

Reference

Skia & FreeType: Android 2D Graphics Essentials,
Kyungmin Lee, LG Electronics

How about some Android graphics true facts? Dianne
Hackborn (2011)

Android 4.0 Graphics and Animations, Romain Guy &
Chet Haase (2011)

Learning about Android Graphics Subsystem, Bhanu
Chetlapalli (2012)

Service £ Android R&E:5ET , REE

(I

A

//l}

"Bxlnb

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

