
Hardware Accelerated 2D 
Rendering for Android

Jim Huang ( 黃敬群 ) <jserv@0xlab.org>

Developer, 0xlab
Feb 19, 2013 / Android Builders Summit



  

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2013 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and translations 
are welcome!

Latest update: Feb 19, 2013

http://creativecommons.org/licenses/by-sa/3.0/legalcode


Agenda (1) Concepts

(2) Performance Problems
(3) Hardware Accelerating
    Case study: skia, webkit



Concepts
Graphic Toolkit, Rendering, GPU operations



Revise what you saw on Android



Exporting Graphics
• can be exported from any of the levels of the graphics stack

– Application, Graphic Toolkit, Graphic Rendering, Bitmapped Device



Exporting Graphics - Application
• Normal way Linux/Android/Iphone runs apps.

– The application itself is exported and run locally.



Exporting Graphics - Toolkit
• Technically very complex. Android has 15 different toolkit API variants.
• Every application can extend the toolkit with custom widgets 

(subclasses of android.view.View).

Exporting Graphics - Rendering
• Exports graphics at the rendering level.
• In Android there are a number of rendering interfaces that can be used:

– skia graphics

– OpenGL ES 1.1 or OpenGL ES 2.0

– Android.view.View



2D Graphics
• The display presents us the contents of something called the 

framebuffer.
• The framebuffer is an area in (V)RAM
• For each pixel on screen there‘s a corresponding memory cell in the 

framebuffer
• Pixels are addressed with 2D coordinates.



2D Graphics
• To change what is displayed → change the colors of pixels in (V)RAM.

– Pixel colors are encoded as RGB or RGBA

• To draw shapes →  need to figure out which framebuffer pixels we have 
to set.
– Images (bitmaps) are not special either

– Pixels of the bitmap get stored in a memory area, just like we store 
framebuffer pixels.

• To draw a bitmap to the framebuffer → copy the pixels. (Blitting)

• We can perform the same operations on bitmaps as we perform on the 
framebuffer, e.g. draw shapes or other bitmaps.



Blitting: copy (parts of) one bitmap to another

Alpha Compositing: blitting + alpha blending

Source: Android Game Development 101, BadlogicGamesSource: Android Game Development 101, BadlogicGames

• Alpha value of a pixel 
governs transparency

• Instead of overwritting a 
destination pixel we mix its 
color with the source pixel.



Android Graphics Stack



Rendering Level: skia

• The rendering level is the graphics layer that 
actually “colors” the pixels in the bitmap.

• skia is a compact open source graphics library 
written in C++.

•  Currently used in Google Chrome, Chrome OS, 
and Android.

Skia is Greek for “shadow”Skia is Greek for “shadow”



Rendering Level: skia

• skia is a complete 2D graphic library for drawing 
Text, Geometries, and Images. Features include:
– 3x3 matrices w/ perspective

– Antialiasing, transparency, filters

– Shaders, xfermodes, maskfilters, patheffects



Rendering Level: skia

• Each skia call has two components:
– the primitive being drawing

(SkRect, SkPath, etc.)

– color/style attributes (SkPaint)

• Usage example:
canvas.save();

canvas.rotate(45);

canvas.drawRect(rect, paint);

canvas.drawText(“abc”, 3, x, y, paint);

canvas.restore();



JNIJNI

Skia bridge

WebKit

WebCore event Refresh the surface
(expose event)

skiaskia

SurfaceSurface

WebKit in Android

Android.webkit.WebViewCore
android.webkit.WebView

...

v8

skia-gpuskia-gpu



CPU vs. GPU Limited at Rendering 
Tasks over Time

Pipelined 3D Interactive Rendering Path Rendering

Goal of NV_path_rendering is to make path rendering a GPU-limited task
Render all interactive pixels, whether 3D or 2D or web content with the GPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

GPU
CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

GPU

CPU

Source: GPU-Accelerated 2D and Web Rendering, Mark Kilgard, NVIDIASource: GPU-Accelerated 2D and Web Rendering, Mark Kilgard, NVIDIA



Rendering Paths
[ skia + gpu; Chrome browser ]

JavaScript
(Canvas) OpenGL ES CPU GPU

Draw Call Draw Call
Computing

Context

Draw Call Draw Call
Computing

Context

Draw Call Draw Call
Computing

Context

Flush
Draw Call Draw Call

Computing
Context

Draw Call Draw Call
Computing

Context

Bottleneck



Rendering Paths
[ ideal case ]

JavaScript
(Canvas) OpenGL ES CPU GPU

Draw Call

Draw Call

Draw Call

Draw 
Call

Computing
Context FlushDraw Call

Draw Call

GL request 
Optimizer



skia + gpu

• Problems
– calls glDrawSomethings too many times

– changes gl states too many times

– switches FBO too many times

– vector graphics APIs and shadows are really slow

• Increases dramatically CPU overhead

Draw Call At Once Ideal GL skia

Bitmap Sprite Good Good

Convex Path Good Poor

Concave Path Good Poor

Bitmap Sprite + Path Good Poor

Path + Different Shadow Good Poor

Text + Different Draw Call Good Poor



The performance problem is still 
rendering...

Let's look into deeper.



Hardware Accelerating
How Android utilizes GPU functionalities



Myths and Facts
• Myth: Android 1.x is slow because of no 

hardware accelerations
– NOT TRUE! window compositing utilizes 

hardware accelerations.

– But it is quite constrained

• There are 4 Window: Status Bar, Wallpaper, 
Launcher, and Menu in the right screenshot.
– Hardware composites animations of Activity 

transition, the fading in/out of Menu.

• However, the content of Window (Canvas) is 
being accelerated by hardware since Android 3.x



View & TextureView

• View
– represents the basic building block for UI

– occupies a rectangular area on the screen and is 
responsible for drawing and event handling.

• SurfaceView
– provides a dedicated drawing surface embedded inside of 

a view hierarchy.

• TextureView
– Since Android 4.0

– Only activated when hardware acceleration is enabled !

– has the same property of SurfaceView, but you can create 
GL surface and perform GL rendering above them.



from EGL to SurfaceFlinger

hardware
OpenGL|ES
hardware

OpenGL|ES
android software

OpenGL|ES renderer
android software

OpenGL|ES renderer







Case study: skia
Paint, Canvas, Backend



skia, again

Canvas encapsulates all of the state about
drawing  into a device (bitmap).

Drawing basic primitives include rectangles, rounded rectangles, ovals, circles,
arcs, paths, lines, text, bitmaps and sprites. Paths allow for the creation of more
advanced shapes. 

While Canvas holds the state of the drawing device, the state (style) of the
object being drawn is held by Paint, which is provided as a parameter to
each of the draw() methods. Paint holds attributes such as color, typeface,
textSize, strokeWidth, shader (e.g. gradients, patterns), etc.



skia rendering pipeline

Source: http://www.xenomachina.com/2011/05/androids-2d-canvas-rendering-pipeline.htmlSource: http://www.xenomachina.com/2011/05/androids-2d-canvas-rendering-pipeline.html



Skia backends

• Render in software 
– create a native window and then

– wrap a pointer to its buffer as an SkBitmap

– Initialize an SkCanvas with the bitmap

• Render in hardware acceleration
– create a GLES2 window or framebuffer and

– create the appropriate GrContext, SkGpuDevice, and 
SkGpuCanvas



How Views are Drawn [Android 2.x]



Hardware-accelerated 2D Rendering

• Since Android 3.x, more complex than before!
• Major idea: transform the implementation of 2D Graphics 

APIs into OpenGL|ES requests
• Texture, Shader, GLContext, pipeline, …
• Major parts for hardware-accelerated 2D Rendering

– Primitive Drawing: Shape, Text,Image

– Layer/Surface Compositing



Control hardware accelerations

• Application level
<application android:hardwareAccelerated="true">

– Default value

• False in Android 3.x, True in Android 4.x

• Activity
• Window

WindowManager.LayoutParams.FLAG_HARDWARE_ACCELERATED

• View
– setLayerType(View.LAYER_TYPE_SOFTWARE,null)

View.setLayerType(int type,Paint p)

Layers = Off-screen Buffers or CachesLayers = Off-screen Buffers or Caches



Source:Accelerated Android Rendering, Google I/O 2011Source:Accelerated Android Rendering, Google I/O 2011

View Layers since Android 3.x



How Views are Drawn [Android 3.x]

HardwareCanvas  SkPaint  GLRenderer→ →
no SkGpuCanvas/SkGpuDevice?!

Why can't skia use its OpenGL
backend directly?



To answer the previous question, we have to 
learn Display List first

• A display list (or display file) is a series of graphics 
commands that define an output image. The image is 
created (rendered) by executing the commands.

• A display list can represent both two- and three-dimensional 
scenes.

• Systems that make use of a display list to store the scene 
are called retained mode systems as opposed to immediate 
mode systems.

http://en.wikipedia.org/wiki/Display_list
http://developer.android.com/guide/topics/graphics/hardware-accel.html



Display List [Android 3.x]

• A display list records a series of graphics related operation and can replay 
them later. Display lists are usually built by recording operations on a 
android.graphics.Canvas.

• Replaying the operations from a display list avoids executing views drawing 
code on every frame, and is thus much more efficient.



Display List [Android 4.1]

Source:For Butter or Worse, Google I/O 2012Source:For Butter or Worse, Google I/O 2012



Case study: webkit
RenderObjects, RenderTree, RenderLayers,

Accelerated Compositing, Rendering Flow, Tiled Texture 



WebKit Rendering

• RenderObjects
• RenderTree
• RenderLayers



WebKit Rendering – RenderObject

• Each node in the DOM tree that produces visual 
output has a corresponding RenderObject.

• RenderObjects are stored in a parallel tree 
structure, called the Render Tree.

• RenderObject knows how to present (paint) the 
contents of the Node on a display surface.

• It does so by issuing the necessary draw calls to 
the GraphicsContext associated with the page 
renderer.
– GraphicsContext is ultimately responsible for writing the 

pixels on the bitmap that gets displayed to the screen.



WebKit Rendering – RenderTree
RenderObjects are stored in a parallel tree structure, called 
Render Tree.



WebKit Rendering – RenderLayers

• Each RenderObject is associated with a 
RenderLayer either directly or indirectly via an 
ancestor RenderObject.

• RenderObjects that share the same coordinate 
space (e.g. are affected by the same CSS 
transform) typically belong to the same 
RenderLayer.

• RenderLayers exist so that the elements of the 
page are composited in the correct order to 
properly display overlapping content, 
semitransparent elements, etc.



RenderLayers

• In general a RenderObject warrants the creation of 
a RenderLayer if
– is the root object for the page

– has explicit CSS position properties (relative, 
absolute or a ransform)

– is transparent

– has overflow, an alpha mask or reflection

– Corresponds to <canvas> element that has a 3D 
(WebGL) context Corresponds to a <video> 
element



WebKit Rendering

• RenderLayer hierarchy is traversed recursively starting from 
the root and the bulk of the work is done in 
RenderLayer::paintLayer().

• WebView is  the web page encapsulated in a UI component.
• Web page update → the redraw of WebView

– Adjust layers structure according to the latest content 
and then render/record the updated

– Render the updated content

• Various approaches of Rendering Architecture
– Use texture or vector (backing store) as the internal 

representation

– multithreaded, multiple processes.



Accelerated Compositing

• Idea:  to optimize for cases where an element would 
be painted to the screen multiple times without its 
content changing.
– For example, a menu sliding into the screen, or a 

static toolbar on top of a video.

• It does so by creating a scene graph, a tree of 
objects (graphics layers), which have properties 
attached to them - transformation matrix, opacity, 
position, effects etc., and also a notification when 
the layer's content needs to be re-rendered.





• When accelerated compositing is enabled, some (but not 
all) of the RenderLayer's get their own backing surface 
(compositing layer) into which they paint instead of drawing 
directly into the common bitmap for the page.

• Compositor is responsible for applying the necessary 
transformations (as specified by the layer's CSS transform 
properties) to each layer before compositing it.



• Since painting of the layers is decoupled from compositing, 
invalidating one of these layers only results in repainting the 
contents of that layer alone and recompositing.



Rendering Flow

• Layers Sync
→ done by WebCore itself

• Layers Compositing

→ done by WebKit port (like Android)

• Android 4.x supports Accelerated Compositing and 
Hardware Accelerations

– decided by the property of given Canvas



[ skia + gpu; Chrome browser ]
JavaScript
(Canvas) OpenGL ES CPU GPU

Draw Call Draw Call
Computing

Context

Draw Call Draw Call
Computing

Context

Draw Call Draw Call
Computing

Context

Flush
Draw Call Draw Call

Computing
Context

Draw Call Draw Call
Computing

Context

Bottleneck

• When WebView is redrawn, UI thread performans compositing
– First, TiledTexture in Root Layer of current Page ViewPort
– Then, TiledTexture in other BackingLayers

• The generation of TiledTexture can utilize both CPU and GPU.
– Android 4.0 still uses CPU.



Flow of Generating Tiled Texture

• Using CPU
– Take one global SkBitmap and reset (size equals to one 

Tile)

– Draw SkPicture → global SkBitmap

– Memory copy from SkBitmap to Graphics Buffer of Tile

• Using GPU
– All real rendering occurs in TextureGenerator thread

– Draw the pre-gernated textures

Page → vector backing store, layer → texture



Techniques to make it better
JavaScript
(Canvas) OpenGL ES CPU GPU

Draw Call

Draw Call

Draw Call

Draw 
Call

Computing
Context FlushDraw Call

Draw Call

GL request 
Optimizer

• improve object lifetime management
• Use GPU specific Backing store implementation
• prefetch optimization for DOM Tree Traversal
• improve texture sharing mechanisms
• Eliminate the loading of U thread



SurfaceFlinger

• Android‘s window compositor
– Each window is also a layer.

– The layers are sorted by Z-order. The Z-order is just the layer 
type as specified in PhoneWindowManager.java.

• When adding a layer with a Z-order that is already used 
by some other layer in SurfaceFlinger‘s list of layers it is 
put on top of the layers with the same Z-order.

• Even many SurfaceFlinger rendering operations are 
inherently flat (2D), it uses OpenGL ES 1.1 for rendering
– May be memory limited on devices with small displays

– Copybit acceleration may be desirable for UI on some devices 
→ deprecated since Android 2.3

– It is known to improve UX with custom copybit module



(low-level) overhead

• Composition overhead
– Android extensions such as “EGLImage from Android native 

buffer”, can employ copybit (2D) backend to further offload GPU

→ use non-linear textures for 3D applications to improve memory 
access locality

• Native ↔ Java communication overhead
– Native code for key operations

– Can be observed by TraceView tool

• Cache management overhead
– range-based L1 and L2 cache functions (clean, invalidate, flush)

– Normally uncached graphics memory is sufficient for gaming use 
cases

– Cached buffers result in higher performance for CPU rendering

in compositing systems



Performance Tips

• Display List is crucial to user experience, but it has 
to be scheduled properly, otherwise CPU loading 
gets high unexpectedly.

• Always verify and probe graphics system using 
Strict Mode

• When hardware acceleration is enable, prevent the 
following operations from being modified/created 
frequently:
– Bitmap, Shape, Paint, Path



Reference

• Skia & FreeType: Android 2D Graphics Essentials, 
Kyungmin Lee, LG Electronics

• How about some Android graphics true facts? Dianne 
Hackborn (2011)

• Android 4.0 Graphics and Animations, Romain Guy & 
Chet Haase (2011)

• Learning about Android Graphics Subsystem, Bhanu 
Chetlapalli (2012)

• Service 與 Android 系統設計，宋寶華



http://0xlab.org


	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

