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About me

I’ve been doing Android since 2008 and Linux kernel 
since 2001

What I do at Intel these days:

• Help to solve the embedded problem.

• Help to solve the scaling problem

• Help get ahead of anticipated transitions

• Help with SW bringing up on new architectures and 
devices

• Do code reviews

• Teach and help others

• Help with unplanned surprises
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This talk gave me a scare

• While spelunking the Intel/psi tree for examples, many 
more components than anticipated seemed to need 
target device information at build time.

• Is my thesis wrong?

• I don’t think so.

• Additional static analysis gives me confidence
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We have too much differentiation ☺☺☺☺

We have 16 TARGET_DEVICEs

• We have 22 REV_DEVICE_NAMEs

Every year we get more lunch targets and more 
SOCs.

• Today we have 4 different SOCs, each having multiple 
lunch targets.

• Next year, I expect 2 or 3 more SOCs to show up.

• Next 2 years, I expect many more devices/targets.
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We are limited

CI process can only handle O(100) changes a day 
worldwide.

Build times are long.

• Engineers testing on multiple targets spend too much 
time building targets.

• Buildbot servers are under stress.

Vendor/intel or device/intel is now hard to maintain.

• Adding new device targets is a pain.  
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Self-imposed Constraints

For all lunch targets we have:

• Shared repo

• Single branch

Branches used mostly for stable releases.

Linux kernel in our repo.

Test before merge process

Gerrit-based
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For what?

15 foo.$(TARGET_DEVICE).so files (6MB)*

27 fw files (11MB)* that may or may not get used at 
runtime.

bzImage differs in .config used.

• This is getting solved ☺

• ONE bzImage for all targets in 2013!

• Go see Andrew Boie’s talk -- Tuesday @11:30!

init.rc files contain slight differences

* data from redhookbay-eng lunch target build 
output.
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What can we do?

Note: FW and Kernel know target device we are 
running as well as SOC and FRU data.

• Lunch target that is binary compatible

• Uber-target: build all variants of all components

• Use smart installer or runtime namespace manipulation at 
early boot. 

• Build engine changes to enable reuse of portable 
intermediates.

• create multiple root + system directories?

• More build servers 

• Put 32-way build hosts on every developer’s desk
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Why not?

A few people feel it’s impossible to fix this.

A few people feel it’s a dumb waste of time to fix this.  

• Buy more servers!  They are cheaper than developer 
time.

Inertia
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Static Analysis

How many make targets use build time target data?

How many make targets use build time target data 
accessed through ro.product.*?

How many targets use platform data extracted from 
the kernel at runtime?

• How is this information used?

• Why is it needed?
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Android Build System

Mega make

• Searches tree for Android*.mk files.  (more or less)

• Important make variables that differ per target:

• TARGET_DEVICE

• REF_DEVICE_NAME � Intel construct to deal with steppings

• TARGET_BOARD_PLATFORM

• PRODUCT_PACKAGES

• BOARD_HAVE_*

• BOARD_USES_*
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Make VAR use *.mk files using it non-trivially 
that matter

TARGET_DEVICE 14 (out of 143 files in entire tree)

REF_DEVICE_NAME 22

TARGET_BOARD_PLATFORM 9 (out of 63)

BOARD_HAVE_* 5

BOARD_USE_* 3

Stats

Make VAR definitions Number of variants

TARGET_DEVICE 16

REF_DEVICE_NAME 10

TARGET_BOARD_PLATFORM 4

BOARD_HAVE_* 10

BOARD_USE_* 14
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Android Runtime

Android has properties that communicate build time 
and device-specific data

• ro.product., build.props

• Build time props

• ADDITIONAL_DEFAULT_PROPERTIES

• ADDITIONAL_BUILD_PROPERTIES

Intel HW has platform data available at runtime

• SPID – soc + board fingerprint

• Includes FRU information

There is also android.boot.* and some ro.* props
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System/build.props that Matter

ro.product

• .model, .name, .device, .board, .platform

Used in 9 places:

• ./frameworks/base/core/java/com/android/internal/content/Nativ
eLibraryHelper.java

• ./frameworks/base/core/jni/AndroidRuntime.cpp

• ./frameworks/base/wifi/java/android/net/wifi/WifiStateMachine.ja
va

• ./frameworks/base/voip/jni/rtp/AudioGroup.cpp

• ./frameworks/av/media/mtp/MtpServer.cpp

• ./hardware/libhardware/hardware.c

• ./hardware/intel/libintelprov/droidboot.c

• ./external/webkit/Source/WebKit/android/jni/WebViewCore.cpp

• ./system/core/adb/adb.c
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Stats

Build time props Use count

build.props 10 

ADDITIONAL_BUILD_PROPERITES 9

ADDITIONAL_DEFAULT_PROPERTIES 8

/sys/spid/* 9 (3 trivially used to compute 
file names)

Build time props Number of variants

ADDITIONAL_BUILD_PROPERITES 14

ADDITIONAL_DEFAULT_PROPERTIES 12

/sys/spid/* na
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Where does all this leave us?

53 out of 3968 make files use target-specific info at build 
time in a non-trivial manner

18 out of 1491 runtime modules use target- specific info 
defined at build time at runtime.

9 components use build.props at runtime 

9 modules use target-specific info at runtime gathered 
from kernel

* Data derived from the redhookbay-eng lunch target 
build
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humph

Problem is still pretty complex.

Problem is bounded to a small set of files/modules 
compared to the full build.

Can we do this in steps?

Are there compromises that get us closer to a 
solution that would be good enough…for now?
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recommendations

• Prefer use of build.prop data over compile time flags wherever 
possible.

• Look into swapping out /system/build.prop file for correct 
target in early boot or at install time.

• When using runtime checks isn’t enough, use unique 
LOCAL_MODULE names.

• Enable all HAL module variants to be built in a single target.

• Scrub build for redundant or no longer used build time 
variables.

• Isolate where you define build time variables to easy-to-find 
and sensible files.

• Do we really need to use BOARD_USE and BOARD_HAS make 
variables?

• Can we make them into build.props?
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Summary

We have a need to scale to support large numbers of 
targets.

There are < 100 files that are causing trouble by 
using build time target data.

Still the problem is difficult.

• We should be able to make it work.

• Reduce number of build time flags.

• Prefer use of getprop(“ro.build….”) to compile time logic.

• Enable building all HAL modules in a single target. 
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We are just getting started

Questions?






