Common clock
framework: how to use it

Gregory CLEMENT
Free Electrons
gregory.clement@free-electrons.com

» Embedded Linux engineer and trainer at Free Electrons since
2010

» Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

» Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

» http://free-electrons.com

» Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell.

» Co-maintainer of mvebu sub-architecture (SoCs from Marvell
Embedded Business Unit)

» Living near Lyon, France

http://free-electrons.com

v

What the common clock framework is
Implementation of the common clock framework

How to add your own clocks

v

How to deal with the device tree

v

Use of the clocks by device drivers

» Most of the electronic chips are driven by clocks

» The clocks of the peripherals of an SoC (or even a board) are
organized in a tree

» Controlling clocks is useful for:

» power management: clock frequency is a parameter of the

dynamic power consumption
» time reference: to compute a baud-rate or a pixel clock for

example

» A clock framework has been available for many years (it
comes from the prehistory of git)

» Offers a a simple APIl: clk_get, clk_enable,
clk_get_rate, clk_set_rate, clk_disable, clk_put,...
that were used by device drivers.

» Nice but had several drawbacks and limitations:

» Each machine class had its own implementation of this API.
» Does not allow code sharing, and common mechanisms
> Does not work for ARM multiplatform kernels.

» Started by the introduction of a common struct clk in early
2010 by Jeremy Kerr

> Ended by the merge of the common clock framework in
kernel 3.4 in May 2012, submitted by Mike Turquette

» Implements the clock framework API, some basic clock
drivers and makes it possible to implement custom clock
drivers

> Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

> Provides a debugfs representation of the clock tree

> Is implemented in drivers/clk

Device driver

Uses the public clock API
clk_get(), clk_put()
clk_prepare(), clk_unprepare()
clk_enable(), clk_disable()
clk_get_rate(), etc.

Uses the
clk_ops
operations
Clock framework

Clock driver
fixed factor

Clock driver
xed-rate
Clock driver
gate

. Clock driver

Describes:

- Clocks and their
relationships

- Which clocks are needed
for the different devices

Device Tree

g mux
Clock driver
divider

> Clock driver
foo
—>

Clock driver
bar

Provided by
the base clock
framework

Provided by
the driver code

Interface divided into two halves:
» Common Clock Framework core

» Common definition of struct clk
» Common implementation of the c1k.h API (defined in
drivers/clk/clk.c)
» struct clk_ops: operations invoked by the clk API
implementation
» Not supposed to be modified when adding a new driver
» Hardware-specific
» Callbacks registered with struct clk_ops and the
corresponding hardware-specific structures (let's call it
struct clk_foo for this talk)
» Has to be written for each new hardware clock
» The two halves are tied together by struct clk_hw, which is
defined in struct clk_foo and pointed to within
struct clk.

Uses the public clock API

Device driver

clk_get(), clk_put()
clk_prepare(), clk_unprepare()
clk_enable(), clk_disable()
clk_get_rate(), etc.

Clock framework

Uses the
clk_ops
operations

Clock driver
fixed factor
Clock driver
fixed-rate
Clock driver
gate

Describes:
- Clo their
ationships

- Which clocks are needed
for the different devices

Device Tree

. Clock driver
g ux

Clock driver
er

> Clock driver
—>

i

foo

Clock driver
bar

Provided by
the base clock
framework

Provided by
the driver code

Implementation defined in drivers/clk/clk.c. Takes care of:

>

>

Maintaining the clock tree

Concurrency prevention (using a global spinlock for
clk_enable () /clk_disable() and a global mutex for all
other operations)

Propagating the operations through the clock tree

Notification when rate change occurs on a given clock, the
register callback is called.

Common struct clk definition located in
include/linux/clk-private.h:

struct clk {

const char *name ;

const struct clk_ops *0ps;

struct clk_hw *hw;

char **parent_names;
struct clk **parents;
struct clk *parent;

struct hlist_head children;
struct hlist_node child_node;

@

The clk_set_rate() example:

int clk_set_rate(struct clk *clk, unsigned long rate)
{
struct clk *top, *fail_clk;
int ret = 0;
/* prevent racing with updates to the clock topology */
mutex_lock (&prepare_lock) ;
/* bail early if nothing to do */
if (rate == clk->rate)
goto out;
if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {

For this particular clock, setting its rate is possible only if the clock is ungated
(not yet prepared)
ret = -EBUSY;

goto out;

X
/* calculate new rates and get the topmost changed clock */
top = clk_calc_new_rates(clk, rate);

[...] Exit with error if clk_ calc_new_rates() failed

@

The clk_set_rate() example (continued):

/* notify that we are about to change rates */
fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE) ;
if (fail_clk) {
pr_warn("/s: failed to set s rate\n"
fail_clk->name);
clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
ret = -EBUSY;
goto out;

func

p—

) —=

}
/* change the rates */
clk_change_rate(top);

Actually set the rate using the hardware operation

out:
mutex_unlock(&prepare_lock);
return ret;

Device driver

Uses the public clock API
clk_get(), clk_put()
clk_prepare(), clk_unprepare()
clk_enable(), clk_disable()
clk_get_rate(), etc.

Clock framework

operatig

/ Clock driver

fixed factor
Clock driver
fixed-rate
Clock driver
gate

» Clock driver
>

Describes:
- Clocks and their
relationships

- Which clocks are needed
for the different devices

Device Tree

4

ux

Clock driver
divider

> Clock driver
foo

Clock driver
bar

Provided by
the base clo
framework

the drivey’code

> Relies on .ops and .hw pointers

» Abstracts the details of struct clk from the
hardware-specific bits

> No need to implement all the operations, only a few are
mandatory depending on the clock type

» The clock is created once the operation set is registered using
clk_register()

@

Hardware operations defined in include/linux/clk-provider.h

struct clk_ops {

int

void

int

void

int

unsigned long

long

int
u8
int
void

(*prepare) (struct clk_hw *hw) ;
(*unprepare) (struct clk_hw *hw);
(*enable) (struct clk_hw *hw);
(*disable) (struct clk_hw *hw);
(*is_enabled) (struct clk_hw *hw);
(*recalc_rate) (struct clk_hw *hw,
unsigned long parent_rate);
(*round_rate) (struct clk_hw *hw, unsigned long,
unsigned long *);
(*set_parent) (struct clk_hw *hw, u8 index);
(*get_parent) (struct clk_hw *hw);
(*set_rate) (struct clk_hw *hw, unsigned long);
(*init) (struct clk_hw *hw);

gate | change rate | single parent | multiplexer | root

.prepare
.unprepare
.enable y
.disable
.is_enabled y
.recalc_rate y
.round_rate
.set_rate y
.set_parent n y n
.get_parent n y n
.init

<

<

Legend: y = mandatory, n = invalid or otherwise unnecessary

The APl is split in two pairs:
» .prepare(/.unprepare):
» Called to prepare the clock before actually ungating it
» Could be called in place of enable in some cases (accessed over
12C)
» May sleep
» Must not be called in atomic context

» .enable(/.disable):

» Called to ungate the clock once it has been prepared

» Could be called in place of prepare in some case (accessed over
single register in an SoC)

» Must not sleep

» Can be called in atomic context

» .is_enabled: Instead of checking the enable count, querying
the hardware to determine if the clock is enabled.

» .round_rate: Returns the closest rate actually supported
by the clock. Called by clk_round_rate() or by
clk_set_rate() during propagation.

» .set_rate: Changes the rate of the clock. Called by
clk_set_rate() or during propagation.

» .recalc_rate: Recalculates the rate of this clock, by
querying hardware supported by the clock. Used internally to
update the clock tree.

@

As seen on the matrix, only used for multiplexers
> .get_parent:
» Queries the hardware to determine the parent of a clock.
» Currently only used when clocks are statically initialized.
» clk_get_parent () doesn't use it, simply returns the
clk->parent internal struct
> .set_parent:

» Changes the input source of this clock

> Receives a index on in either the .parent_names or .parents
arrays

» clk_set_parent () translate clk in index

@

» The common clock framework provides 5 base clocks:

» fixed-rate: s always running and provide always the same rate

» gate: Have the same rate as its parent and can only be gated
or ungated

» mux: Allow to select a parent among several ones, get the rate
from the selected parent, and can't gate or ungate

» fixed-factor: Divide and multiply the parent rate by
constants, can’t gate or ungate

» divider: Divide the parent rate, the divider can be selected
among an array provided at registration, can't gate or ungate

» Most of the clocks can be registered using one of these base

clocks.
» Complex hardware clocks have to be split in base clocks
» For example a gate clock with a fixed rate will be composed of
a fixed rate clock as a parent of a gate clock.
» New clock type submitted recently: clk-composite. It will
allow to aggregate the functionality of the basic clock types
into one clock. Still under review.

» Put in place to ease migration of the complex SoC to the
common clock framework
» Platforms used to use hundreds clocks statically defined
» They had to include include/linux/clk-private.h and
__clk_init () to reuse these definitions.
» Still possible (but not recommended) to do static
initialization
» Absolutely no new platform should include clk-private.h
» Clocks must be initialized via a call to c1k_register () using
clk_init_data objects which get bundled with c1k_hw

Device driver

Uses the public clock API
clk_get(), clk_put()
clk_prepare(), clk_unprepare()
clk_enable(), clk_disable()
clk_get_rate(), etc.

Clock framework

Uses the
clk_ops
operations

Clock driver
fixed factor
Clock driver
fixed-rate
Clock driver
gate

Device Tree

Describes:

- Clocks and their
relationships

- Which clocks are needed

for the different devic

. Clock driver
>

4

ux

Clock driver

Clock driver
foo

o
g

Clock driver
bar

—>
L—>

Provided by
the base clock
framework

Provided by
the driver code

@

» The device tree is the preferred way to declare a clock and
to get its resources, as for any other driver using DT we have
to:

» Parse the device tree to setup the clock: resources but also
properties are retrieved.
> Create an array ofstruct of_device_id to match the

compatible clocks
» Associate data and setup functions to each node

@

From arch/arm/boot/dts/ecx-common.dtsi

[...]
osc: oscillator {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <33333000>;

ddrpll: ddrpll {
#clock-cells = <0>;
compatible = "calxeda,hb-pll-clock";
clocks = <&osc>;
reg = <0x108>;

@

From drivers/clk/clk-highbank.c

static const __initconst struct of_device_id clk_match[] = {
{ .compatible = "fixed-clock", .data = of_fixed_clk_setup, 1},

[...1
};
void __init highbank_clocks_init(void)
{
of _clk_init(clk_match);
}

From drivers/clk/clk.c

void __init of_clk_init(const struct of_device_id *matches)

{
struct device_node *np;
for_each_matching_node(np, matches) {
const struct of_device_id *match = of_match_node(matches, np);
of _clk_init_cb_t clk_init_cb = match->data;
clk_init_cb(np);
}
}

@

From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{
struct clk *clk;
const char *clk_name = node->name;
u32 rate;
if (of_property_read_u32(node, "clock-frequency", &rate))
return;
of_property_read_string(node, "clock-output-names", &clk_name) ;
clk = clk_register_fixed_rate(NULL, clk_name, NULL,
CLK_IS_ROOT, rate);
if (!'IS_ERR(clk))
of _clk_add_provider(node, of_clk_src_simple_get, clk);
}

@

From arch/arm/boot/dts/armada-xp.dtsi

[...]

coreclk: mvebu-sar@d0018230 {

};
cpuclk:
};

[...]

compatible = "marvell,armada-xp-core-clock";
reg = <0xd0018230 0x08>;
#clock-cells = <1>;

clock-complex@d0018700 {

#clock-cells = <1>;

compatible = "marvell,armada-xp-cpu-clock";
reg = <0xd0018700 0xA0>;

clocks = <&coreclk 1>;

@

From drivers/clk/mvebu/clk-core.c (some parts removed)

static const struct core_clocks armada_370_core_clocks = {
.get_tclk_freq = armada_370_get_tclk_freq,
.num_ratios = ARRAY_SIZE(armada_370_xp_core_ratios),

};
static const __initdata struct of_device_id clk_core_match[] = {
[...]
{
.compatible = "marvell,armada-xp-core-clock",
.data = &armada_xp_core_clocks,
}’
[...]
};
void __init mvebu_core_clk_init(void)
{
struct device_node *np;
for_each_matching_node(np, clk_core_match) {
const struct of_device_id *match =
of _match_node(clk_core_match, np);
mvebu_clk_core_setup(np, (struct core_clocks *)match->data);
}
}

@

From drivers/clk/mvebu/clk-core.c (some parts removed)

static void __init mvebu_clk_core_setup(struct device_node *np,

—

struct core_clocks *coreclk)

{

const char *tclk_name = "tclk";
void __iomem *base;

base = of _iomap(np, 0);
/* Allocate struct for TCLK, cpu clk, and core ratio clocks */
clk_data.clk_num = 2 + coreclk->num_ratios;
clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),
GFP_KERNEL) ;
/* Register TCLK */
of _property_read_string_index(np, "clock-output-names", O,
&tclk_name) ;
rate = coreclk->get_tclk_freq(base);
clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL,
CLK_IS_ROOT, rate);

@

» Expose the clocks to other nodes of the device tree using
of _clk_add_provider () which takes 3 parameters:

» struct device_node *np: Device node pointer associated
to clock provider. This one is usually received by the setup
function, when there is a match, with the array previously
defined.

» struct clk *(*clk_src_get) (struct of_phandle_args
*args, void *data): Callback for decoding clock. For the
devices, called through clk_get () to return the clock
associated to the node.

» void *data: context pointer for the callback, usually a
pointer to the clock(s) to associate to the node.

@

From drivers/clk/clk.c

struct clk *of_clk_src_simple_get(struct of _phandle_args *clkspec,
void *data)

{
return data;

}
From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{
struct clk *clk;

[...]
clk = clk_register_fixed_rate(NULL, clk_name, NULL,
CLK_IS_ROOT, rate);
if (!IS_ERR(clk))
of _clk_add_provider(node, of_clk_src_simple_get, clk);
}

@

From include/linux/clk-provider.h

struct clk_onecell_data {

};

struct clk *x*clks;
unsigned int clk_num;

From drivers/clk/clk.c

struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec,

{

void *data)

struct clk_onecell_data *clk_data = data;
unsigned int idx = clkspec->args[0];
if (idx >= clk_data->clk_num) {
return ERR_PTR(-EINVAL);
}
return clk_data->clks[idx];

@

From drivers/clk/mvebu/clk-core.c (some parts removed)

static struct clk_onecell_data clk_data;
static void __init mvebu_clk_core_setup(struct device_node *np,
struct core_clocks *coreclk)

{
clk_data.clk_num = 2 + coreclk->num_ratios;
clk_data.clks = kzalloc(clk_data.clk_num * sizeof (struct clk *),
GFP_KERNEL) ;
[...]
for (n = 0; n < coreclk->num_ratios; n++) {
[...]
clk_data.clks[2+n] = clk_register_fixed_factor (NULL, rclk_name,
cpuclk_name, 0, mult, div);
};
[...]
of _clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
}

Device driver

Uses the public clyck API
clk_get(), clk_pug()
clk_prepare(), clk_unprizpare()
clk_enable(), clk_disable()

clk_get_rate(), etc

3

>

Clock

Uses the
clk_ops

Clock er
fixed factor
Clock driver
Xe te
Clock driver
gate

Describes:

- Clocks and their
relationships

- Which clocks are needed
for the different devices

Device Tree

| Clock driver
7 mux
Clock driver
divider

foo

5 Clock driver
—>

Clock driver
bar

Provided by
the base clock
framework

Provided by
the driver code

> Use clk_get () to get the clock of the device

» Link between clock and device done either by platform data
(old method) or by device tree (preferred method)

» Managed version: devm_get_clk()

» Activate the clock by c1k_enable() and/or clk_prepare()
(depending of the context), sufficient for most drivers.

» Manipulate the clock using the clock API

From arch/arm/boot/dts/armada-xp.dtsi

ethernet@d0030000 {
compatible = "marvell,armada-370-neta';
reg = <0xd0030000 0x2500>;
interrupts = <12>;
clocks = <&gateclk 2>;
status = "disabled";

s
From arch/arm/boot/dts/highbank.dts

watchdog@f££10620 {
compatible = "arm,cortex-a9-twd-wdt";
reg = <0xfff10620 0x20>;
interrupts = <1 14 0xf01>;
clocks = <&a9periphclk>;

@

From drivers/net/ethernet/marvell/mvneta.c

static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq, u32 value)

{
[...]
clk_rate = clk_get_rate(pp->clk);
val = (clk_rate / 1000000) * value;
mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
}
static int mvneta_probe(struct platform_device *pdev)
{
[...]
pp—>clk = devm_clk_get (&pdev->dev, NULL);
clk_prepare_enable (pp->clk) ;
[...]
}
static int mvneta_remove(struct platform_device *pdev)
{
[...]
clk_disable_unprepare(pp->clk);
[...]
}

» Efficient way to declare and use clocks: the amount of code
to support new clocks is very reduced.
» Still quite recent:
» Complex SoCs still need to finish their migration
» Upcoming features:

» DVFS (Patch set from Mike Turquette adding new
notifications and reentrancy)

» Composite clock (Patch set from Prashant Gaikwad)

> Improve debugfs output by adding JSON style (also from
Prashant Gaikwad)

Questions?

Gregory CLEMENT

gregory.clement@free-electrons.com

Thanks to Thomas Petazzoni,(Free Electrons, working with me on
Marvell mainlining), Mike Turquette (Linaro, CCF maintainer)

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2013/elc/common-clock-
framework-how-to-use-it/

http://free-electrons.com/pub/conferences/2013/elc/common-clock-framework-how-to-use-it/
http://free-electrons.com/pub/conferences/2013/elc/common-clock-framework-how-to-use-it/

