

<Insert Picture Here>

The GNU C++ Library and its special modes
Paolo Carlini
PhD

Outline

• Give a feeling of the current status of the special
modes of the GNU C++ runtime library.
– The maintainers spend quite a bit of work even simply

keeping everything in sync and functional when bits of the
normal mode is changed!

• Emphasize, not hide, the open issues, dark corners,
beyond what's available in the form of Bugzilla PRs
and discussions on the mailing lists.

• … encourage help and contributions from the
community!

A Chronology

• 2004 (GCC 3.4): debug-mode
– Contributed by Doug Gregor
– Exploits the “strong using” GNU extension

• 2008 (GCC 4.3): parallel-mode
– Contributed by Johannes Singler and Leonor Frias

• 2009 (GCC 4.4): “inline namespace” mechanism
• 2010 (GCC 4.5): profile-mode
– Contributed by Silvius Rus, Lixia Liu, and Changhee Jung

• 2011 (GCC 4.6): debug-mode performance work

Namespace association everywhere

• The idea is segregating the code for each special
mode in a separate namespace and then importing it
on demand in namespace std.

• However, the normal using-declaration mechanism is
way too weak for that
– A template can only be specialized in its actual namespace.
– Argument-dependent lookup (aka “Koenig lookup”) breaks

down if library components are split across multiple
namespaces.

• The “inline namespace” mechanism, part of the
forthcoming C++1x Standard, solves all those issues!
– See N2535 on the WG21 web site for details...
– Available in GCC in C++03 mode too (like, eg, variadic templ)

Namespace association (N2535 example)
namespace Lib

{

 inline namespace Lib_1 // Lib_1 is an inline namespace of Lib

 {

 template <typename T> class A;

 }

 template <typename T> void g(T);

}

struct MyClass { … };

namespace Lib

{

 template <> class A<MyClass> { … }; // Ok, can specialize

}

int main()

{

 Lib::A<MyClass> a;

 g(a); // Ok, Lib is an associated namespace of A, is searched

}

Debug-mode

• Today, most implementations of the C++ standard
library provide a debug-mode, at least performing
runtime checks via
– Some kind of safe iterators, which keep track of the container

whose elements they reference (eg, trying to increment past-
the-end iterators, dereferencing iterators pointing to
destructed container, all easily detected)

– Pre-conditions in the algorithms (eg, valid ranges, sorted
ranges)

• Well established in GCC, -D_GLIBCXX_DEBUG
– Pedantic mode also available

• Refer to the documentation about the specific design
choices of the implementation

Debug-mode issues

• Many!

• Issues with std::string, exported, weaker checking
– The extern template mechanism (standard in C++1x, by

the way) is disabled in order to always check pre-conditions
– No safe iterators

• std::bitset vs C++1x
– Would not be a literal type anymore

• Performance can be poor in some cases
– Improvements in GCC 4.6 thanks to Francois Dumont' help

(see libstdc++/46659 for some impressive numbers)
– More can be probably done, Francois is on it..

Debug-mode issues (2)

• Behavior vs threads
– Ideally, the debug-mode library, should be indistinguishable

from the normal library, but the safe iterators are a pain!
– Rather brutal locking strategies
– Not part of the original design
– Improvements in GCC 4.6: essentially a pool of locks,

randomly selected via hashing. We can certainly do better!
• What about exceptions instead of assert?
– Long standing libstdc++/23888, differing opinions
– C++1x knows about throwing checking libraries (see N3248)

Parallel-mode

• Enabled by -D_GLIBCXX_PARALLEL -fopenmp
• Stems from an University of Karlsruhe project aimed

at parallelizing the C++ library via OpenMP.
• In the current form many algorithms are already

available, both in <algorithm> proper and in
<numeric>.

• Tuning and customization is easy (see docs), in any
case the defaults are often sensible (at least on x86 /
x86_64-linux).

• Among the original contributors, Johannes Singler is
certainly still quite responsive for normal bugs.
– Not quite sure about enhancements and extensions

Parallel-mode, some (rough) numbers

• A very simple experiment
– On an i7-980x Linux machine, using /dict/words: 3878904

chars, 380646 words
– Everything default, -O2 vs -O2 + parallel-mode
– Relative real times in the Table
– (# of iterations, etc, full details available)

serial parallel
sort & random_shuffle 15 3
find (“thing”) 7 1
stable_sort & random_shuffle 25 4

Parallel-mode issues

• Dynamic memory allocation
– As happens for a lot of scientific computing software, the

code assumes that memory is just available and no memory
allocation throws.

– This is of course a very bad problems if the parallel
replacements are supposed to behave exactly like the serial
counterparts (besides performance).

• Correctness vs C++1x about “move-only types”
– Quite a few parallel algorithms (eg, std::sort) assume that the

types are just CopyConstructible and CopyAssignable, C++03
way. But in C++1x only MoveConstructible and
MoveAssignable are required.
• See “xfailed” testcases in the testsuite (but some can be

actually enabled, do not really fail anymore, I'll adjust that)

Parallel-mode issues (2)

• Integration with debug-mode
– Currently the special modes are mutually exclusive
– As noticed by Francois Dumont, doesn't have to be like that,

at least for debug-mode and parallel-mode. Will be hopefully
fixed in 4.7

• Vectorization?
– For bits of <numeric> seems an obvious choice
– How does that mix with OpenMP?

• Other forms of parallelization?

Profile-mode

• Silvius Rus @ google is the main contributor of the
original code and maintainer today

• Enabled by -D_GLIBCXX_PROFILE
• Focused on the selection of the optimal std:: container

(or of its parameters) for each problem
• During representative runs the instrumented library

records the call patterns, collects statistics
• Basing on a performance model, which also includes

details of the architecture (eg, Opteron vs Core2),
diagnostics is produced about whether a different
container would be more efficient in each “context”
– normally the granularity is an individual function call

Profile-mode (2)

• Examples of diagnostics (various subsets)
– Vector-to-list
– Ordered-to-unordered
– …
– Hashtable-too-small
– Hashtable-too-large
– …
– Vector-too-small
– Vector-too-large
– …
– (see on-line docs for a detailed list & status table)

• Adding more is a work in progress

Profile-mode, trivial example (from Silvius)

#include <vector>

int main()
{
 std::vector<int> v;
 for (int k = 0; k < 1024; ++k)
 v.insert(v.begin(), k);
}

• It works! Profile-mode suggests to switch from std::vector
to std::list and indeed the code runs about two times faster.

• Also...

Profile-mode (4)

• … the current - ie, as delivered in GCC 4.5 and 4.6 -
profile-mode is already able to detect cases where
std::vector is instead preferable to std::list - thanks to
the compact memory layout - even if many insertions
in the middle happen, something badly known in the
community until quite recently.
– A typical simple case would be inserting while maintaing the

sequential container ordered.

• http://gcc.gnu.org/ml/libstdc++/2010-12/msg00080.html
– “A call for libstdc++ profile mode diagnostic ideas”
– A lot of improvements forthcoming in 2011
– Please get in touch with Silvius!

http://gcc.gnu.org/ml/libstdc++/2010-12/msg00080.html

Profile-mode issues

• Of course still at an initial stage, needs testing
• Make sure it works well also on non-x86/x86_64 (and

non-Linux too ;) machines

• The memory footprint of the instrumented code could
be optimized (too many inlines). Known issue.

• Double check and likely fix some parts of the models
vs C++1x
– For example, internal bookkeeping operations of containers

like std::vector can be much faster for “moveable” types: the
performance model cannot be the same!

Profile-mode issues (2)

• Probably do something about controlling granularity in
a case by case way

• Science-fiction: automatic decisions, without asking
the user to change himself the code, thus adjust the
container, etc.

Conclusions

• Let's stop here today.
• Please also send your ideas, observations, etc, to:

libstdc++@gcc.gnu.org
• ... or simply to me ;)

paolo.carlini@oracle.com

mailto:libstdc++@gcc.gnu.org
mailto:paolo.carlini@oracle.com

Bibliography

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
• http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode.html
• http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
• http://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html
• Parallelization of Bulk Operations for STL Dictionaries. Johannes

Singler. Leonor Frias. Copyright © 2007 Workshop on Highly Parallel
Processing on a Chip (HPPC) 2007. (LNCS).

• The Multi-Core Standard Template Library. Johannes Singler. Peter
Sanders. Felix Putze. Copyright © 2007 Euro-Par 2007: Parallel
Processing. (LNCS 4641).

• Perflint: A Context Sensitive Performance Advisor for C++ Programs.
Lixia Liu. Silvius Rus. Copyright © 2009. Proceedings of the 2009
International Symposium on Code Generation and Optimization.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

