
LLVM – An Introduction

Linux Collaboration Summit, April 7, 2011

David Kipping, Qualcomm Incorporated

2

LLVM – An Introduction

3

LLVM Vision and Approach

 Primary mission: build a set of modular compiler
components:
 Reduces the time & cost to construct a particular compiler
 A new compiler = glue code plus any components not yet available

 Components are shared across different compilers
 Improvements made for one compiler benefits the others

 Allows choice of the right component for the job
 Don’t force “one true register allocator”, scheduler, or optimization order

 Secondary mission: Build compilers that use these
components
 ... for example, an amazing C compiler

4

LLVM Umbrella of Projects

 LLVM Language independent optimizer and code generator
 Many optimizations, many targets
 Not a compiler by itself

 Clang C/C++/Objective-C front-end
 Designed for speed, reusability, compatibility with GCC

 MC: Machine Code slicing and dicing
 Assemblers, disassemblers, object file processing

 LLDB – LLVM Debuggers
 Native debugger that reuses Clang’s parser, LLVM JIT, MC

disassemblers

 libc++: C++ standard runtime library
 Full support for C++‘0x

5

LLVM Code Generator Highlights

Approachable C++ code base, modern design, easy to learn
 Strong and friendly community, good documentation

Language and target independent code representation
 Very easy to generate from existing language front-ends
 Text form allows you to write your front-end in perl if you desire

Modern code generator
 Easily retargetable to new chips
 Many popular targets supported:
 X86, ARM, PowerPC, SPARC, Alpha, MIPS, Blackfin, CellSPU, MBlaze, MSP430,

XCore, etc.
 Supports both JIT and static code generation

6

LLVM – Static Compiler Configuration

ARM/X86/…

Architecture
Dependent
Optimizer /
Code Gen

Bitcode
Architecture
Independent

Optimizer
CompilerC/C++/OpenGL/…

7

LLVM – JIT Configuration

X86 Gen

ARM Gen

GPU

…

Bitcode
Architecture
Independent

Optimizer
CompilerC/C++/OpenGL/…

Separable by
- Time
- Space
- Architecture

8

Colorspace Conversion
 Code to convert from one color format to another:
 e.g. BGRA 444R to RGBA 8888
 Hundreds of combinations, importance depends on input
for each pixel {
switch (infmt) {
case RGBA5551:

R = (*in >> 11) & C
G = (*in >> 6) & C
B = (*in >> 1) & C

... }
switch (outfmt) {
case RGB888:

*outptr = R << 16 |
G << 8 ...

}
}

for each pixel {
R = (*in >> 11) & C;
G = (*in >> 6) & C;
B = (*in >> 1) & C;
*outptr = R << 16 |

G << 8 ...
}

Run-time
specialize

Compiler optimizes
shifts and masking

– Speedup depends on src/dest format:
– 5.4x speedup on average, 19.3x max speedup: (13.3MB/s to 257.7MB/s)

9

LLVM Growing Impact
 Solid technology base for tool evolution and code generation

for the next decade
 Provides an excellent common ground for collaboration
 Open source
 Vibrant ecosystem
 Release cadence of approximately 6 months

 LLVM has been adopted in important technologies and will
become a standard component for Linux platforms
 Chrome PNaCl
 Android Renderscript
 OpenCL – discussions on adopting LLVM IR
 Graphics pipelines – prevalent

 LLVM will start shipping in volume on Linux mobile devices this
year with Android Honeycomb

10

LLVM Timeline
2000

2011

2001

2007
2008
2009
2010

2006

2004

2002
2003

2005

Open source project begins at University of Illinois
at Urbana–Champaign

LLVM 2.9 - MC is now used by default for ELF

Android Renderscript adopts LLVM

LLVM 2.8 - added support for the Boost libraries,
feature-complete for C++, builds Linux kernel,
Clang is self-hosting

LLVM 2.6 - Clang declared production ready as a C
compiler, self-hosting

LLVM 2.0 – ARM/Thumb support

LLVM 1.0

11

Further Adoption

 Active investigations in other system areas adopting LLVM
 Potential to use LLVM for complete system builds
 Reduce build complexities
 Leverage bug fixes and optimizations

 LLVM is not quite ready for production Linux builds
 Continued improvements in generated code performance
 Further integration with Linux ecosystem

 If interested, join the LLVM community
 LLVM.org
 Next developers meeting in the fall

12

Agenda

Session Speaker Start Duration
Introduction to LLVm David Kipping 9:00 0:20
LLVM Use Cases - PNaCl David Sehr 9:20 0:30
LLVM Use Cases - LLVM for RenderScript and
Pixelflinger Shih-wei Liao 9:50 0:30

Benchmarking & Continuous Testing of LLVM Michael Larabel 10:20 0:30
Break 10:50 0:15
Building Linux with LLVM Bryce Lelbach 11:05 0:30
LLVM Ecosystem Mark Mitchell 11:35 0:35

13

Nothing in these materials is an offer to sell any of the components or devices
referenced herein. Certain components for use in the U.S. are available only through
licensed suppliers. Some components are not available for use in the U.S.

Disclaimer

Thank You

For more information on Qualcomm, visit us at:
www.qualcomm.com
www.qualcomm.com/blog

Follow us on:

	LLVM – An Introduction��Linux Collaboration Summit, April 7, 2011
	LLVM – An Introduction
	LLVM Vision and Approach
	LLVM Umbrella of Projects
	LLVM Code Generator Highlights
	LLVM – Static Compiler Configuration
	LLVM – JIT Configuration
	Colorspace Conversion
	LLVM Growing Impact
	LLVM Timeline
	Further Adoption
	Agenda
	Disclaimer
	Thank You

