

Android Internals

Android Builders Summit – April 13th 2011

Karim Yaghmour
karim.yaghmour@opersys.com

@karimyaghmour

About ...

● Author of:

● Introduced Linux Trace Toolkit in 1999
● Originated Adeos and relayfs (kernel/relay.c)

1. Android Concepts

2. Overall Architecture

3. System startup

4. Linux Kernel

5. Hardware Support

6. Native User-Space

7. Dalvik

8. JNI

9. System Server

10.Activity Manager

11.Binder

12.Stock AOSP Apps

13.Hacking

1. Android Concepts

● Components
● Intents
● Component lifecycle
● Manifest file
● Processes and threads
● Remote procedure calls

1.1. Components

● 1 App = N Components

● Apps can use components of other applications

● App processes are automagically started whenever any part
is needed

● Ergo: N entry points, !1, and !main()

● Components:
● Activities
● Services
● Broadcast Receivers
● Content Providers

1.2. Intents

● Intent = asynchronous message w/ or w/o
designated target

● Like a polymorphic Unix signal, but w/o
required target

● Intents “payload” held in Intent Object
● Intent Filters specified in Manifest file

1.3. Component lifecycle

● System automagically starts/stops/kills
processes:
● Entire system behaviour predicated on low memory

● System triggers Lifecycle callbacks when
relevant

● Ergo: Must manage Component Lifecycle
● Some Components are more complex to

manage than others

1.4. Manifest file

● Informs system about app’s components
● XML format
● Always called AndroidManifest.xml
● Activity = <activity> ... static
● Service = <service> ... static
● Broadcast Receiver:

● Static = <receiver>
● Dynamic = Context.registerReceiver()

● Content Provider = <provider> ... static

1.5. Processes and threads

● Processes
● Default: all callbacks to any app Component are issued to the main process thread

● <activity>—<service>—<recipient>—<provider> have process attribute to override
default

● Do NOT perform blocking/long operations in main process thread:

– Spawn threads instead

● Process termination/restart is at system’s discretion

● Therefore:

– Must manage Component Lifecycle

● Threads:
● Create using the regular Java Thread Object

● Android API provides thread helper classes:

– Looper: for running a message loop with a thread

– Handler: for processing messages

– HandlerThread: for setting up a thread with a message loop

1.6. Remote procedure calls

● Apparently System V IPC is evil ...
● Android RPCs = Binder mechanism
● Binder is a low-level functionality, not used as-is
● Instead: must define interface using Interface

Definition Language (IDL)
● IDL fed to aidl Tool to generate Java interface

definitions

1.7. Development tools

● SDK:
● android – manage AVDs and SDK components
● apkbuilder – creating .apk packages
● dx – converting .jar to .dex
● adb – debug bridge
● emulator – QEMU-based ARM emulator
● ...

● Eclipse w/ ADT plugin
● NDK: GNU toolchain for native binaries

2.1. Overall Architecture - EL

2.2. Overall Architecture - Android

3. System Startup

● Bootloader
● Kernel
● Init
● Zygote
● System Server
● Activity Manager
● Launcher (Home)

3.1. Bootloader

● aosp/bootable/bootloader
● Custom bootloader for Android
● USB-based
● Implements the “fastboot” protocol
● Controlled via “fastboot” cli tool on host

● aosp/bootable/recovery
● UI-based recovery boot program
● Accessed through magic key sequence at boot
● Usually manufacturer specific variant

● Flash layout:

0x0000038600000x000003900000 : "misc"
0x0000039000000x000003e00000 : "recovery"
0x000003e000000x000004300000 : "boot"
0x0000043000000x00000c300000 : "system"
0x00000c3000000x0000183c0000 : "userdata"
0x0000183c00000x00001dd20000 : "cache"
0x00001dd200000x00001df20000 : "kpanic"
0x00001df200000x00001df60000 : "dinfo"
0x00001df600000x00001dfc0000 : "setupdata"
0x00001dfc00000x00001e040000 : "splash1"
0x0000003000000x000001680000 : "modem"

From Acer Liquid-E

Kernel
/system
/data
/cache

3.2. Kernel

● Early startup code is very hardware dependent
● Initializes environment for the running of C code
● Jumps to the architecture-independent

start_kernel() function.
● Initializes high-level kernel subsystems
● Mounts root filesystem
● Starts the init process

3.3. Android Init

● Open, parses, and runs /init.rc:
● Create mountpoints and mount filesystems
● Set up filesystem permissions
● Set OOM adjustments properties
● Start daemons:

– adbd

– servicemanager (binder context manager)

– vold

– netd

– rild

– app_process -Xzygote (Zygote)

– mediaserver

– ...

3.4. Zygote, etc.

● Init:
● app_process -Xzygote (Zygote)

● frameworks/base/cmds/app_process/app_main.cpp:
● runtime.start(“com.android.internal.os.Zygote”, ...

● frameworks/base/core/jni/AndroidRuntime.cpp:
● startVM()
● Call Zygote's main()

● frameworks/base/core/java/com/android/internal/os/Zy
goteInit.java:
● ...

● preloadClasses()
● startSystemServer()
● ... magic ...
● Call SystemServer's run()

● frameworks/base/services/java/com/android/server
/SystemServer.java:
● Start all system services/managers
● Start ActivityManager:

– Send Intent.CATEGORY_HOME
– Launcher2 kicks in

4. Linux Kernel

4.1. Androidisms

● Wakelocks
● lowmem handler
● Binder
● ashmem – Anonymous Shared Memory
● RAM console
● Logger
● ...

5. Hardware support
GPS

Display

Lights

Keyboard
Buttons
Battery
Notifications
Attention

Audio
Camera
Power Management
Sensors

Accelerometer
Magnetic Field
Orientation
Gyroscope
Light
Pressure
Temperature
Proximity

Radio Layer Interface

Bluetooth BlueZ through D-BUS IPC (to avoid GPL contamination it seems)
Manufacturer-provided libgps.so

Wifi wpa_supplicant
Std framebuffer driver (/dev/fb0)

Keymaps and Keyboards Std input event (/dev/event0)
Manufacturer-provided liblights.so

Backlight

Manufacturer-provided libaudio.so (could use ALSA underneath ... at least as illustrated in their porting guide)
Manufacturer-provided libcamera.so (could use V4L2 kernel driver underneath ... as illustrated in porting guide)
“Wakelocks” kernel patch
Manufacturer-provided libsensors.so

Manufacturer-provided libril-<companyname>-<RIL version>.so

6. Native User-Space

● Mainly
● /data => User data
● /system => System components

● Also found:
● /cache
● /mnt
● /sbin
● Etc.

● Libs:

Bionic, SQLite, SSL, OpenGL|ES,

Non-Posix: limited Pthreads support, no SysV IPC

● Toolbox
● Daemons:

servicemanager, vold, rild, netd, adbd, ...

7. Dalvik
● Sun-Java =

Java language + JVM + JDK libs
● Android Java =

Java language + Dalvik + Apache Harmony
● Target:

● Slow CPU
● Relatively low RAM
● OS without swap space
● Battery powered

● Now has JIT

7.1. Dalvik's .dex files

● JVM munches on “.class” files
● Dalvik munches on “.dex” files
● .dex file = .class files post-processed by “dx”

utility
● Uncompressed .dex = 0.5 * Uncompressed .jar

8. JNI – Java Native Interface

● Call gate for other languages, such as C, C++
● Equivalent to .NET's pinvoke
● Usage: include and call native code from App
● Tools = NDK ... samples included
● Check out “JNI Programmer's Guide and

Specification” - freely available PDF

9. System Server

Entropy Service Device Policy Audio Service
Power Manager Status Bar Headset Observer
Activity Manager Clipboard Service Dock Observer
Telephone Registry Input Method Service UI Mode Manager Service
Package Manager Backup Service
Account Manager
Content Manager Connectivity Service Recognition Service
System Content Providers Throttle Service Status Bar Icons
Battery Service Accessibility Manager
Lights Service Mount Service ADB Settings Observer
Vibrator Service Notification Manager
Alarm Manager Device Storage Monitor

Location Manager
Sensor Service Search Service
Window Manager

Wallpaper Service

NetStat Service
NetworkManagement Service AppWidget Service

DiskStats Service

Init Watchdog

DropBox Service
Bluetooth Service

9.1. Some stats

● frameworks/base/services/java/com/android/ser
ver:
● 3.5 M
● ~100 files
● 85 kloc

● Activity manager:
● 920K
● 30+ files
● 20 kloc

9.2. Observing with “logcat”

● Find the System Server's PID
$ adb shell ps | grep system_server

system 63 32 120160 35408 ffffffff afd0c738 S system_server

● Look for its output:
$ adb logcat | grep “63)”

...
D/PowerManagerService(63): bootCompleted
I/TelephonyRegistry(63): notifyServiceState: 0 home Android Android 310260 UMTS CSS not supp...
I/TelephonyRegistry(63): notifyDataConnection: state=0 isDataConnectivityPossible=false reason=null interfaceName=null
networkType=3
I/SearchManagerService(63): Building list of searchable activities
I/WifiService(63): WifiService trying to setNumAllowed to 11 with persist set to true
I/ActivityManager(63): Config changed: { scale=1.0 imsi=310/260 loc=en_US touch=3 keys=2/1/2 nav=3/1 ...
I/TelephonyRegistry(63): notifyMessageWaitingChanged: false
I/TelephonyRegistry(63): notifyCallForwardingChanged: false
I/TelephonyRegistry(63): notifyDataConnection: state=1 isDataConnectivityPossible=true reason=simL...
I/TelephonyRegistry(63): notifyDataConnection: state=2 isDataConnectivityPossible=true reason=simL...
D/Tethering(63): MasterInitialState.processMessage what=3
I/ActivityManager(63): Start proc android.process.media for broadcast com.android.providers.downloads/.DownloadReceiver:
pid=223 uid=10002 gids={1015, 2001, 3003}
I/RecoverySystem(63): No recovery log file
W/WindowManager(63): App freeze timeout expired.
...

9.3. Snapshot with “dumpsys”
Currently running services:
 SurfaceFlinger
 accessibility
 account
 activity
 alarm
 appwidget
 audio
 backup
...
 wifi
 window

DUMP OF SERVICE SurfaceFlinger:
+ Layer 0x396b90
 z= 21000, pos=(0, 0), size=(480, 800), needsBlending=1, needsDithering=1, invalidat ...
0]
 name=com.android.launcher/com.android.launcher2.Launcher
 client=0x391e48, identity=6
 [head= 1, available= 2, queued= 0] reallocMask=00000000, inUse=-1, identity=6, status=0
 format= 1, [480x800:480] [480x800:480], freezeLock=0x0, dq-q-time=53756 us
...

10. ActivityManager

● Start new Activities, Services
● Fetch Content Providers
● Intent broadcasting
● OOM adj. maintenance
● Application Not Responding
● Permissions
● Task management
● Lifecycle management

● Ex. starting new app from Launcher:
● onClick(Launcher)
● startActivity(Activity.java)
● <Binder>
● ActivityManagerService
● startViaZygote(Process.java)
● <Socket>
● Zygote

11. Binder

● CORBA/COM-like IPC
● Data sent through “parcels” in “transactions”
● Kernel-supported mechanism
● /dev/binder
● Check /proc/binder/*
● android.* API connected to System Server

through binder.

12. Stock AOSP Apps

/packages/apps /packages/providers

Launcher2

Music
Browser
Calculator
Calendar Provision
Camera

Settings
Contacts

Email
Gallery

/packages/inputmethods

AccountsAndSettings ApplicationProvider LatinIME
AlarmClock Mms CalendarProvider OpenWnn
Bluetooth ContactsProvider PinyinIME

PackageInstaller DownloadProvider
Protips DrmProvider

GoogleContactsProvider
QuickSearchBox MediaProvider

CertInstaller TelephonyProvider
SoundRecorder UserDictionaryProvider

DeskClock SpeechRecorder
Stk
VoiceDialer

HTMLViewer

13. Hacking

● Source:
● AOSP – source.android.com / android.git.kernel.org
● Cyanogenmod – www.cyanogenmod.com
● xdadevelopers – www.xda-developers.com

● Tools:
● repo / git
● fastboot
● recovery
● Kernel privilege escalation exploits -- “one-click root”
● ...

Thank you ...

karim.yaghmour@opersys.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

