
utrace: a new in-kernel API for
debugging and tracing user tasks

Roland McGrath

utrace is ...

 ... not a tracer (like ftrace et al)
 ... not a user-level ABI (like ptrace)
 ... not a clever choice of name!

 ... an in-kernel API (for loadable kernel modules to use)
 ... a multiplexing layer (not just one new kind of tracing)
 ... intended to support general-purpose user debugging

● can change user threads’ behavior (stop, step, perturb)
 ... a means to build new interfaces and other new features
 ... a clean platform for reworking the ptrace() internals

utrace prerequisites

 tracehook.h (2.6.27)
● clean, well-documented set of calls from kernel core
● utrace patch touches tracehook.h (#ifdef CONFIG_UTRACE)

● no need to touch core code directly, merges easy
 arch code

● user_*_step (2.6.25)
● user_regset (2.6.25)
● asm/syscall.h (2.6.27)
● etc. (see arch/Kconfig comments)
● There is no arch-specific code at all in utrace itself.

 2.6.29 arch support (HAVE_ARCH_TRACEHOOK)
● ia64, powerpc, s390, sh, sparc, x86

 Future arch support: Ask your arch maintainer!

utrace goals

 Establish platform for new work
● API for kernel modules
● allows multiple separate uses: “tracing engines”
● bottom layer, usable by non-gurus

● block_device:fs :: utrace:tracing engine
● net_device:net proto :: utrace:tracing engine

 Help you do it right
● non-invasive (no interference with signals, wait, etc.)
● low-overhead
● arch-independent
● maintain system invariants (SIGKILL)
● callbacks at safe points

utrace API uses

 In progress
● Uprobes (Jim Keniston et al)
● Systemtap
● kmview (Renzo Davoli)
● Seccomp clean-up or replacement

● bone-simple with utrace, no asm hacking required
● ptrace() clean-up (Oleg Nesterov)

 Ideas/vaporware
● UML helper module

● Share code with kmview?
● New user-level debugger ABIs (ptrace killer)
● This space for rent

utrace API concepts

 tracing engine = your code, calls into utrace API
 API calls are per-thread (aka task)
 asynchronous attach/detach

● struct utrace_engine pointer is handle
 event callbacks (at safe points)

● place to access thread state, user memory, etc.
● via user_regset, other kernel APIs or data structures

 control
● stop
● resume, step, interrupt, report
● detach

 report & quiesce: explicit synchronization via callbacks

utrace events
 SYSCALL_ENTRY, SYSCALL_EXIT

● entry/exit distinguished, unlike ptrace
 SIGNAL, SIGNAL_{IGN,STOP,TERM,CORE}

● signal disposition distinguished, unlike ptrace
● no signal event for SIGKILL (only EXIT/DEATH/REAP)

 EXEC
 CLONE

● thread/child tracking can be set up by callback
 JCTL

● not possible with ptrace
 EXIT, DEATH
 REAP

● not possible with ptrace
 QUIESCE (catch all)

utrace callbacks: “safe points”

 close to user mode, no entanglements
● returning to user (before signals), or syscall entry
● no locks, preemptible
● can block (modulo “well-behaved” interaction rules)

 can use user_regset (read or modify)
● only places user_regset calls are kosher
● except DEATH, REAP

 can stop here (TASK_TRACED)
● same as ptrace() stops; ps shows “T”, etc.

 QUIESCE callback
● catch-all at any event that any engine traces

 UTRACE_REPORT, UTRACE_INTERRUPT

● engine can request QUIESCE via utrace_control()

utrace API
 struct utrace_engine_ops

● callback function pointers for each event type
 struct utrace_engine

● void *data
● utrace_engine_get() / utrace_engine_put()

 struct task_struct vs struct pid
● choose your refcount/RCU poison

 enum utrace_resume_action
 utrace_attach_task() or utrace_attach_pid()

● attach new engine, or look up attached engine
 utrace_set_events() or utrace_set_events_pid()
 utrace_control() or utrace_control_pid()
 utrace_barrier() or utrace_barrier_pid()
 utrace_prepare_examine(), utrace_finish_examine()

utrace callbacks

 run in traced thread
● except sometimes REAP (runs in parent calling wait())
● always at “safe point”

 arguments: engine, resume action, + event-specific
 return value

● resume action (resume/stop/step/etc.) + event-specific
 well-behaved callbacks

● don't run too long (using traced thread’s CPU time!)
● don't block much (could break other engines, SIGKILL!)
● use UTRACE_STOP to sleep: woken via utrace_control()

 synchronizing with callbacks
● death races: utrace_set_events()/utrace_control() errors
● utrace_barrier()

Callback example

static u32 syscall_exit(enum utrace_resume_action action,

struct utrace_engine *engine,

struct task_struct *task,

struct pt_regs *regs)

{

printk("pid %d syscall-exit %ld\n",

 task->pid, syscall_get_error(task, regs));

return UTRACE_RESUME;

}

...

static const struct utrace_engine_ops my_ops = {

.report_syscall_exit = syscall_exit,

};

...

utrace API future work

 API tweaks
● callback order (engine priorities?)
● syscall_entry inverse callback order?
● UTRACE_STOP synchronization corners
● stop/resume notification for syscall_entry

 extension events
● avoid overloading signals
● use for hardware trace events
● dynamically-registered
● tie-in with tracepoints?

 hw_breakpoint integration (use extension events)
 BTS integration (use extension event for buffer full)

Beyond utrace: lots of hacking to do!
 clean up ptrace() implementation

● work in progress for 2.6.31 (Oleg Nesterov)
 entirely new user-level interfaces

● fd-based, pollable
● minimize kernel-user round-trips with debugger

 “groups & rules” engine
● Underlies user-level interface + in-kernel uses (stap)
● Trace many threads/processes uniformly (“groups”)
● Event rules: filters & actions

● Gather details (registers, etc.) & report to userland
● Callback (e.g. to stap probe)
● Manage groups (e.g. on clone, exec)

Questions?

roland@redhat.com | people.redhat.com/roland
utrace-devel@redhat.com | sourceware.org/systemtap/wiki/utrace

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

