
Linux is a registered trademark of Linus Torvalds.

Uprobes: User-Space Probes

●Jim Keniston: jkenisto@us.ibm.com

April 9, 2009

Topics
● Overview

● What and why?
● Features
● Uses
● Tie-ins to kprobes, utrace, SystemTap

● History
● Status and ongoing work
● Issues, questions

Overview: What and Why?
● What:
● kernel API, analogous to kprobes
● breakpoints for user apps, handled in kernel

●

● struct uprobe *u = ...;
● ...
● u->pid = 1234;
● u->vaddr = 0x080484a8;
● u->handler = my_callback;
● result = register_uprobe(u);

Overview: What and Why?
● Why?
● useful for dynamic, ad hoc instrumentation
● handlers have system-wide view: kernel and apps
● overcomes some limitations of ptrace:

● Uprobes incurs lower overhead.
● Uprobes useful for multithreaded apps.
● “Who can probe whom” defined by uprobes client.

Overview: Features
● no need to modify probed process's source or binary
● per-process

● All threads in process can (independently) hit
probepoint.

● breakpoint probes (uprobes) and function-return
probes (uretprobes)

● (Kernel) handler runs on probe hit.
● Handler runs in context of probed task.
● Handler can sleep – e.g., for kmalloc or paging.

Overview: Uses
● Typical use is via an ad hoc instrumentation module, a

la kprobes.
● SystemTap uses uprobes for user-space probing.

● Considering procfs and/or debugfs/trace interface.
● System-call interface possible:

● new system call API
● enhancements to ptrace

● Architectures supported: x86 (32- and 64-bit),
powerpc, s390, ia64

Tie-ins to Kprobes
● Kprobes-like API: [un]register_u[ret]probe()
● Probed instruction single-stepped out of line (SSOL):

● Leave breakpoint in place; execute copy of probed
instruction...

● ... to avoid probe misses in multithreaded apps.
● Can be “boosted” to avoid 2nd (single-step) trap.
● Single-stepping inline provided for jump-starting ports.

● Uprobes-specific complications:
● “Out of line” instruction copies must reside in probed

process's address space. Ditto the return-probe
trampoline.
● Solution: SSOL vma

● Need to handle full instruction set (not just kernel
instructions), guard against evil apps.

Tie-ins to Utrace and SystemTap
● Uprobes is a utrace client:

● signal callback for breakpoint and single-step traps
● clone, exec, and exit callbacks to track

thread/process/image lifetime
● quiesce callback for breakpoint insertion/removal
● Uprobes patch modifies only Makefiles and Kconfigs.

● Uprobes is currently packaged with the
SystemTap runtime.

History
● Spring 2006: Pre-utrace uprobes prototype skewered

on LKML, soon discarded.
● “Probe per-process, not per-executable.”
● "Don't hook readpage(). Do COW via

access_process_vm()."
● "Just use ptrace."

● June 2006: Ptrace-based uprobes library prototyped,
soon discarded.

● June 2006: Utrace first posted to LKML.
● Oct 2006: First working prototype (i386) of utrace-

based uprobes.
● Dec 2006-Jan 2007: Uprobes += uretprobes, x86_64

port
●

●

History, cont.
● Feb-Mar 2007: SSOL-area implementation firmed up,

with input from akpm, Dave Hansen, Roland McGrath.
● Spring 2007: More uprobes ports
● April 2007: Uprobes posted to LKML Utrace dropped

from -mm tree
● Oct 2007: Uprobes tucked into SystemTap runtime.
● Summer 2008: SystemTap += DWARF-based probing

of user apps
● Summer 2008: Utrace API revamped.
● Summer-Fall 2008: Uprobes adapts to new utrace and

SystemTap-generated clients.
● Winter 2008-2009: Uprobes refactoring under way.

Status and Current Work
● SystemTap + uprobes working for x86, powerpc, s390.

 (ia64 = uprobes only)
● Refactoring uprobes into components for wider use:

● instruction analysis (very architecture-specific)
● user breakpoint assistance (ubp)
● Redo SSOL vma management? Fold into ubp?
● utrace helpers (attaching or quiescing all threads in a

process)
● LKML review
● Feature requests/ideas:

● bulk registration/unregistration
● u[ret]probe objects reusable immediately after

registration
● uprobes booster: eliminate the single-step trap

Issues/Questions
● x86 instruction analysis: unify with kvm?
● SSOL vma: preallocation vs. lazy allocation; fixed vs.

expandable; private vs. public slots
● support for 16-bit, VM86 apps?

Legal Statement
●This work represents the view of the author and does not
necessarily represent the view of IBM.
●IBM is a registered trademark of International Business Machines
Corporation in the United States and/or other countries.
●Linux is a registered trademark of Linus Torvalds.
●Other company, product, and service names may be trademarks or
service marks of others.

