
Systemtap times

April 2009

Frank Ch. Eigler <fche@redhat.com>
systemtap lead

mailto:fche@redhat.com

why trace/probe

● to monitor future
– background monitoring, flight recording

– programmed response

● to debug present
– symbolic, source-level exploration

– unforseen problems

● to analyze past
– collect traces

– analyze dumps

rich capabilities

● system-wide (kernel + userspace)
programmable tracing/probing

● compatible with a wide range of kernels,
distributions

● operates on live system, no
patch/reconfigure/recompile/reboot

● measure time, access any data, explore control
flow, correlate events, inject faults

● integrated access to multiple tracing facilities

consider alternatives

● ftrace
– hard-coded, kernel-only, single-user

– we share instrumentation hooks, some
infrastructure

● ksplice
– unprotected, kernel-only, x86

– maybe let's share code recompilation process

● dtrace
– not available on linux

– we share ambitions

examples

● http://sourceware.org/systemtap/examples/

● http://sourceware.org/systemtap/wiki/WarStories

● ordinary
– log events, filtered + correlated + summarized

– call graphs with variables

– measure times/values, indexed by anything

– graph cpu/net/disk utilization, act upon thresholds

● esoteric
– kernel-enforced file naming policy filters

– security bug band-aids

operation part 1

● compile probe script foo.stp:
– parse script

– combine it with tapset (library of scripts by experts)

– combine it with debugging information, probe
catalogues, event source metadata

– generate C code with safety checks

– compile into kernel module with kbuild

– result: vanilla kernel module

operation part 2

● run probe module foo.ko:
– load into kernel

– detach (flight-recorder mode) or consume trace live

– unload

● probe module may be cached, reused, shared
with other machines running same kernel

● sysadmins can authorize others to run
precompiled modules

the “upstream” question

● but it already works on your machine
– not a driver; not a filesystem

– uses vanilla module APIs

– a little like X.org or glibc or kgdb

– or even latencytop ... but with ~no kernel prereqs

● has large userspace component
● few novel kernel-side fixed pieces with likely

non-stap in-kernel usage
– some have been & more will be submitted

community: inward

● contributors: dozens per release
● open project since inception
● user groups: university students, sysadmins,

support engineers, kernel developers,
userspace developers, data center customers

● distributions shipping systemtap: rhel, debian,
fedora, suse, ubuntu, windows, mandriva,
maemo, solaris, oracle, gentoo, centos, ...

community: outward

● OLS presence since 2005, regular LKML
presence since 2006

● responding to kernel developer requests
– kernel build tree targeting

– debuginfo-less operation

– http://sourceware.org/systemtap/wiki/Myths

● promote kernel “dual use” technologies
– markers, tracepoints, kprobes, relayfs

– utrace merging goalposts

– motivating tracing area

debuginfo

● bountiful gcc byproduct
● ease his pain:

– on-the-fly debuginfo generation, compression

– remote compilation server

– but: is it faster to repeatedly recompile w/ printk?

● they will come:
– statement-level, source-level symbolic access

– local variables, arbitrary expressions

– full type information

● but still “go some distance” without it

recent developments

● probing user-space programs
● attaching to user + kernel markers, tracepoints
● organizing more samples, documentation
● easing deployment: compile server
● easing usability by kernel developers: testing

linux-next etc., kernel trees
● better error messages

kernel markers/tracepoints

● statically compiled into kernel/programs
● supplements dynamic instrumentation
● higher performance, reliable data
● shared hook sites between tracing tools
● programmable handling of events

user-space probing

● finally, system-wide, seamless, symbolic
● based upon dwarf debugging data (gcc -g)
● dynamically instrument binaries, shared

libraries, potentially at the statement level
● easily trace variables
● attach to sys/sdt.h dtrace markers too, as

compiled into postgres, java, ...

user-space probing

● measure average dbms query execution times

function time() { return gettimeofday_us() }
probe process("psql").function("SendQuery").call
{
 entry[tid()]=time()
}
probe process("psql").function("SendQuery").return
{
 tid=tid()
 if (! ([tid] in entry)) next

 query=user_string($query)
 queries[query] <<< time() - entry[tid]
 delete entry[tid]
}
/* and an “end” probe to format report */

user-space probing

probe end,error,timer.s(5) {
 foreach ([q] in queries limit 1)
 { any = 1 }
 if (any) {
 printf("%2s %6s %-40s\n",
 "#", "uS", "query");
 foreach ([q] in queries- limit 10)
 printf("%2d %6d %-40s\n",
 @count(queries[q]),
 @avg(queries[q]), q)
 printf("\n");
 delete queries
 }
}

user-space probing

 # uS query
12 990 DELETE FROM num_result;
 6 3909 COMMIT TRANSACTION;
 6 132 BEGIN TRANSACTION;
 6 143 SELECT date '1999-01-08';
 4 3651 insert into toasttest
values(decode(repeat('1234567890',10000),'escape'));
 4 3786 insert into toasttest
values(repeat('1234567890',10000));
 4 1218 SELECT '' AS five, * FROM FLOAT8_TBL;
 3 804 END;
 3 295 BEGIN;
 3 1032 INSERT INTO TIMESTAMPTZ_TBL VALUES ('now');

under construction
● system-wide backtracing for deep profiling
● java probing & backtracing
● unprivileged user support: “masochism” mode
● more debuginfo-less operation
● gui-controlled integrated general monitoring
● better quality and smaller quantity of debuginfo
● interface to other kernel event sources: perfctr,

ftrace, kmmiotrace

samples/documentation

● samples installed, categorized, also online
– http://sourceware.org/systemtap/examples

● “beginner's guide”
– http://tinyurl.com/ar8wat

● wiki
– http://sourceware.org/systemtap/wiki

http://sourceware.org/systemtap/examples
http://tinyurl.com/ar8wat

http://sourceware.org/systemtap

