
April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 1

Linux Foundation
 Collaboration Summit 2009

LTTng, Filling the Gap Between Kernel
Instrumentation and a Widely Usable

Kernel Tracer

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 2

> Plan

● Presenter
● Tracing Infrastructure in Mainline Kernel
● LTTng motivation
● Work done since Kernel Summit and Plumbers

Conference
● Conclusion

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 3

> Presenter

● Mathieu Desnoyers
● Author/Maintainer of LTTng and LTTV
● Ph.D. Candidate at École Polytechnique de

Montréal
● Fields of interest

● Tracing
● Reentrancy, Synchronization, Locking Primitives
● Multi-core, Real-time

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 4

> Tracing Infrastructure in Mainline
 Kernel
● Kernel Markers

– Debug-style event description
● trace_mark(sched_schedule, “prev %d next %d”,

 prev->pid, next->pid);

– Tracer event description (LTTng tree)
● Exports the markers through debugfs markers

subdirectory
● Connects callbacks to tracepoints automatically

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 5

> Tracing Infrastructure in Mainline
Kernel

void probe_sched_switch(struct rq *rq, struct task_struct *prev,
 struct task_struct *next);

DEFINE_MARKER_TP(kernel, sched_schedule, sched_switch, probe_sched_switch,
 "prev_pid %d next_pid %d prev_state #2d%ld");

notrace void probe_sched_switch(struct rq *rq, struct task_struct *prev,
 struct task_struct *next)
{
 struct marker *marker;
 struct serialize_int_int_short data;

 data.f1 = prev->pid;
 data.f2 = next->pid;
 data.f3 = prev->state;

 marker = &GET_MARKER(kernel, sched_schedule);
 ltt_specialized_trace(marker, marker->single.probe_private,
 &data, serialize_sizeof(data), sizeof(int));
}

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 6

> Tracing Infrastructure in Mainline
Kernel

● Tracepoints
– Infrastructure to provide managed set of kernel

events
● include/trace/sched.h

DECLARE_TRACE(sched_switch,
 TPPROTO(struct rq *rq, struct task_struct *prev,
 struct task_struct *next),
 TPARGS(rq, prev, next));

● kernel/sched.c
– trace_sched_switch(rq, prev, next);

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 7

> LTTng motivation

● Application, library and kernel system-wide
performance analysis and debugging

● Heavy HPC multi-core application workloads
● Fit within embedded systems resources

limitations
● Run continuously on production systems (flight

recorder mode) to provide meaningful bug
reports

● Primary target : developers, end-user support

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 8

> LTTng key features

● Very good re-entrancy
– Supports kernel-wide instrumentation

● Solid monotonic time-base
● Low-overhead
● Architecture agnostic core
● Extensible instrumentation
● Multiple tracing sessions support

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 9

> Users and contributors

● Google, IBM, Ericsson, Fujitsu, Siemens,
Nokia, Autodesk, Sony, Montavista, Samsung,
Boeing

● Distributions
– SuSe real-time (Novell)

– WindRiver Workbench 2.6

– Montavista Carrier Grade Linux 5.0

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 10

> Work Done since
KS2008 and LPC

● Event grouping / ID management
● Event header rework
● Removed “Heartbeat timer”
● Kernel Markers as data source
● Pluggable memory back-ends
● Splice
● DebugFS interface
● Layered buffering system

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 11

> Event grouping / ID management

● Group events under “channels”
– One channel per tracer

– Each channel has its own per-CPU buffers

● Allocate event IDs dynamically within the group
– Allows very compact trace event headers

– 5 bits typically used for event ID

● Event ID allocation and channel management
added to the Linux Kernel Markers.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 12

> Event Header Rework

● 27-bits for cycle counter
● 5-bits for event ID

– Ids 29, 30, 31 reserved for “extended headers”
● 29 : size and timestamp counter
● 30 : id and size
● 31 : id

● Optional “payload size” for tracer debugging as
extension

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 13

> Removed “Heartbeat timer”

● Assuming a 64-bits time source
– see trace clock 32 to 64

● Detect 27-bits overflows since the previous
event in the current buffer in the tracing site by
saving the counter read in a local structure
– Must carefully consider non-atomic writes on 32-bits

architectures. Insures no overflow will be missed,
but can generate duplicated extended header.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 14

> Kernel Markers as data source

● All events meant to be saved in any channel
have a description part of the marker section

● All events can be saved either in tracer-specific
channel, or used for system-wide tracing

● Events declared are presented to user-space
through a debugfs interface and can be
enabled individually.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 15

> Pluggable memory back-ends

● Stop using vmap() to save TLB entries
● Created an API to permit sequential write into

an array of page pointers.
– No event size limitation

– Space reservation layer does not have to care
about memory back-end used

● Allows to be built with a different (potentially
contiguous) back-end.
– Supports, e.g., writing to video card memory

(survives hot reboots). Useful for crash dump.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 16

> Splice()

● Zero-copy from the kernel to the block device or
network.

● Does not require extra TLB entries like the
vmap() approach.

● Extended NFS to provide splice() write support.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 17

> Debugfs interface

● /mnt/debugfs/ltt
– markers

– setup_trace, destroy_trace, control

– kprobes

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 18

> Layered buffering system

● Event ID management
● Space reservation

– Lockless

– IRQ off

– IRQ off + spinlock

● Memory backend
– Allocation

– write(), read()

– API shows memory as contiguous

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 19

> Text output (“cat” support)

● Most of the infrastructure present
● Specialized tracers can hook on the buffers

through internal API and use the low-level read
primitives to print the data following their ascii-
art inspiration

● Will provide /mnt/debugfs/ltt/<trace>/ascii
● One single last patch should be reworked to

perform integration with the ring buffer. See ltt-
ascii.c in the LTTng tree.

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 20

> Performance Considerations

● Optimization phase
– Turn “pluggability” into a build-time feature

● Remove costly function calls from the fast path !!

– Create ltt-type-serializer for custom probes
● C structures directly written into the buffer, all sizes

known statically.

– Inline all tracer fast-paths, build-time modularization

● Result : worse-case nightmare-ish scenario
– Localhost tbench 8-cores with tracing enabled

● 18.2 % slowdown (but typical under 5 %)

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 21

> Conclusion (1)

● Two tracers are not competition if they target
different user bases
– LTTng : targets end-user / developer / tech support

– Ftrace : targets kernel developer

● Main difference comes from different use-cases
and requirements (see motivations)

● Sharing low-level transport infrastructure is not
possible if requirements from one party are not
considered

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 22

> Conclusion (2)

● Mainlining ?
– Core kernel code is jealously protected due to large

impact of all subsystems
● Scheduler
● Kernel instrumentation

– Kprobes, Markers, Tracepoints, Function Tracer

– Non-core kernel code “should” easily get to mainline
● Drivers
● Tracer infrastructure (trace control, buffering...)

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 23

> Conclusion (3)

● Tracer control and transport are not core
kernel code. Why hasn't it been merged yet ?
– LTTng is mature

● Follows K42 and LTT development
● Started more than 4 years ago

– LTTng has a large user-base
● Google, IBM, Ericsson, Fujitsu, Siemens, Nokia,

Autodesk, Sony, Montavista, Samsung, Boeing
● Included in SuSe, Montavista, WindRiver distributions
● Main complaint : must recompile their kernel

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 24

> Conclusion (4)

● Why ? One ring-buffer to rule them all ?

April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 25

> Questions ?

? ● Information
– http://www.lttng.org/

– ltt-dev@lists.casi.polymtl.ca

http://www.lttng.org/
mailto:ltt-dev@lists.casi.polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

