
April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 1

Linux Foundation
       Collaboration Summit 2009

LTTng, Filling the Gap Between Kernel 
Instrumentation and a Widely Usable 

Kernel Tracer



April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 2

> Plan

● Presenter
● Tracing Infrastructure in Mainline Kernel
● LTTng motivation
● Work done since Kernel Summit and Plumbers 

Conference
● Conclusion
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> Presenter

● Mathieu Desnoyers
● Author/Maintainer of LTTng and LTTV
● Ph.D. Candidate at École Polytechnique de 

Montréal
● Fields of interest

● Tracing
● Reentrancy, Synchronization, Locking Primitives
● Multi-core, Real-time
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> Tracing Infrastructure in Mainline
         Kernel
● Kernel Markers

– Debug-style event description
● trace_mark(sched_schedule, “prev %d next %d”,

 prev->pid, next->pid);

– Tracer event description (LTTng tree)
● Exports the markers through debugfs markers 

subdirectory
● Connects callbacks to tracepoints automatically
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> Tracing Infrastructure in Mainline
Kernel

void probe_sched_switch(struct rq *rq, struct task_struct *prev,
                struct task_struct *next);

DEFINE_MARKER_TP(kernel, sched_schedule, sched_switch, probe_sched_switch,
        "prev_pid %d next_pid %d prev_state #2d%ld");

notrace void probe_sched_switch(struct rq *rq, struct task_struct *prev,
                struct task_struct *next)
{
        struct marker *marker;
        struct serialize_int_int_short data;

        data.f1 = prev->pid;
        data.f2 = next->pid;
        data.f3 = prev->state;

        marker = &GET_MARKER(kernel, sched_schedule);
        ltt_specialized_trace(marker, marker->single.probe_private,
                &data, serialize_sizeof(data), sizeof(int));
}
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> Tracing Infrastructure in Mainline
Kernel

● Tracepoints
– Infrastructure to provide managed set of kernel 

events
● include/trace/sched.h

DECLARE_TRACE(sched_switch,
        TPPROTO(struct rq *rq, struct task_struct *prev,
                struct task_struct *next),
                TPARGS(rq, prev, next));

● kernel/sched.c
– trace_sched_switch(rq, prev, next);
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> LTTng motivation

● Application, library and kernel system-wide 
performance analysis and debugging

● Heavy HPC multi-core application workloads
● Fit within embedded systems resources 

limitations
● Run continuously on production systems (flight 

recorder mode) to provide meaningful bug 
reports

● Primary target : developers, end-user support
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> LTTng key features

● Very good re-entrancy
– Supports kernel-wide instrumentation

● Solid monotonic time-base
● Low-overhead
● Architecture agnostic core
● Extensible instrumentation
● Multiple tracing sessions support
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> Users and contributors

● Google, IBM, Ericsson, Fujitsu, Siemens, 
Nokia, Autodesk, Sony, Montavista, Samsung, 
Boeing

● Distributions
– SuSe real-time (Novell)

– WindRiver Workbench 2.6

– Montavista Carrier Grade Linux 5.0
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> Work Done since
KS2008 and LPC

● Event grouping / ID management
● Event header rework
● Removed “Heartbeat timer”
● Kernel Markers as data source
● Pluggable memory back-ends
● Splice
● DebugFS interface
● Layered buffering system
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> Event grouping / ID management

● Group events under “channels”
– One channel per tracer

– Each channel has its own per-CPU buffers

● Allocate event IDs dynamically within the group
– Allows very compact trace event headers

– 5 bits typically used for event ID

● Event ID allocation and channel management 
added to the Linux Kernel Markers.
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> Event Header Rework

● 27-bits for cycle counter
● 5-bits for event ID

– Ids 29, 30, 31 reserved for “extended headers”
● 29 : size and timestamp counter
● 30 : id and size
● 31 : id

● Optional “payload size” for tracer debugging as 
extension
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> Removed “Heartbeat timer”

● Assuming a 64-bits time source
– see trace clock 32 to 64

● Detect 27-bits overflows since the previous 
event in the current buffer in the tracing site by 
saving the counter read in a local structure
– Must carefully consider non-atomic writes on 32-bits 

architectures. Insures no overflow will be missed, 
but can generate duplicated extended header.
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> Kernel Markers as data source

● All events meant to be saved in any channel 
have a description part of the marker section

● All events can be saved either in tracer-specific 
channel, or used for system-wide tracing

● Events declared are presented to user-space 
through a debugfs interface and can be 
enabled individually.
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> Pluggable memory back-ends

● Stop using vmap() to save TLB entries
● Created an API to permit sequential write into 

an array of page pointers.
– No event size limitation

– Space reservation layer does not have to care 
about memory back-end used

● Allows to be built with a different (potentially 
contiguous) back-end.
– Supports, e.g., writing to video card memory 

(survives hot reboots). Useful for crash dump.
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> Splice()

● Zero-copy from the kernel to the block device or 
network.

● Does not require extra TLB entries like the 
vmap() approach.

● Extended NFS to provide splice() write support.
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> Debugfs interface

● /mnt/debugfs/ltt
– markers

– setup_trace, destroy_trace, control

– kprobes
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> Layered buffering system

● Event ID management
● Space reservation

– Lockless

– IRQ off

– IRQ off + spinlock

● Memory backend
– Allocation

– write(), read()

– API shows memory as contiguous
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> Text output (“cat” support)

● Most of the infrastructure present
● Specialized tracers can hook on the buffers 

through internal API and use the low-level read 
primitives to print the data following their ascii-
art inspiration

● Will provide /mnt/debugfs/ltt/<trace>/ascii
● One single last patch should be reworked to 

perform integration with the ring buffer. See ltt-
ascii.c in the LTTng tree.
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> Performance Considerations

● Optimization phase
– Turn “pluggability” into a build-time feature

● Remove costly function calls from the fast path !!

– Create ltt-type-serializer for custom probes
● C structures directly written into the buffer, all sizes 

known statically.

– Inline all tracer fast-paths, build-time modularization

● Result : worse-case nightmare-ish scenario
– Localhost tbench 8-cores with tracing enabled

● 18.2 % slowdown (but typical under 5 %)
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> Conclusion (1)

● Two tracers are not competition if they target 
different user bases
– LTTng : targets end-user / developer / tech support

– Ftrace : targets kernel developer

● Main difference comes from different use-cases 
and requirements (see motivations)

● Sharing low-level transport infrastructure is not 
possible if requirements from one party are not 
considered



April 9th, 2009 Mathieu Desnoyers, École Polytechnique de Montréal 22

> Conclusion (2)

● Mainlining ?
– Core kernel code is jealously protected due to large 

impact of all subsystems
● Scheduler
● Kernel instrumentation

– Kprobes, Markers, Tracepoints, Function Tracer

– Non-core kernel code “should” easily get to mainline
● Drivers
● Tracer infrastructure (trace control, buffering...)
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> Conclusion (3)

● Tracer control and transport are not core 
kernel code. Why hasn't it been merged yet ?
– LTTng is mature

● Follows K42 and LTT development
● Started more than 4 years ago

– LTTng has a large user-base
● Google, IBM, Ericsson, Fujitsu, Siemens, Nokia, 

Autodesk, Sony, Montavista, Samsung, Boeing
● Included in SuSe, Montavista, WindRiver distributions
● Main complaint : must recompile their kernel
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> Conclusion (4)

● Why ? One ring-buffer to rule them all ?
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> Questions ?

? ● Information
– http://www.lttng.org/

– ltt-dev@lists.casi.polymtl.ca

http://www.lttng.org/
mailto:ltt-dev@lists.casi.polymtl.ca
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