
Tux Faces the Rigors of
Terascale Computation:

High-Performance Computing and the
Linux Kernel

David Cowley
Pacific Northwest National Laboratory

Information Release #PNNL-SA-65780

EMSL is a national scientific user facility at
the Pacific Northwest National Laboratory

EMSL—the Environmental Molecular Science Laboratory—located in
Richland, Washington, is a national scientific user facility funded by
the DOE. EMSL provides integrated experimental and computational
resources for discovery and technological innovation in the
environmental molecular sciences to support the needs of DOE and
the nation.

William R. Wiley’s Vision:
An innovative multipurpose user facility providing
“synergism between the physical, mathematical, and
life sciences.”

Visit us at
www.emsl.pnl.gov

William R. Wiley, founder

http://www.emsl.pnl.gov/

Characteristics of EMSL

• Scientific expertise that enables scientific discovery and innovation.
• Distinctive focus on integrating computational and experimental capabilities

and collaborating among disciplines.
• A unique collaborative environment that fosters synergy between

disciplines and a complimentary suite of tools to address the science of our
users.

• An impressive suite of state-of-the-art instrumentation that pushes the
boundaries of resolution and sensitivity.

• An economical venue for conducting non-proprietary research.

High-performance computing in EMSL

• EMSL uses high-performance computing for:
Chemistry
Biology (which can be thought of as chemistry on a larger scale)
Environmental systems science.

• We will focus primarily on quantum computational
chemistry

Atmospheric
Aerosol Chemistry

(developing science theme)

Biological
Interactions &

Dynamics

Geochemistry/
Biogeochemistry &
Subsurface Science

Science of
Interfacial

Phenomena

Defining high-performance
computing hardware for EMSL science

Hardware Feature B C E
Memory hierarchy (bandwidth, size and latency) X X X
Peak flops (per processor and aggregate) X X X
Fast integer operations X
Overlap computation, communication and I/O X X X
Low communication latency X X X
High communication bandwidth X
Large processor memory X X
High I/O bandwidth to temporary storage X
Increasing global and long-term disk storage
needs (size)

X X

B = Biology; C = Chemistry; E = Environmental Systems Science

5

Scientists project
science needs in a

‘Greenbook’

Hardware Features Summary

The need for a balanced system

• From a certain point of view,
the idea is to get the most
math done in the least amount
of time

• We need a good balance of
system resources to
accomplish this

• That data may need to come
from many far-flung places

CPU cache
Local RAM
Another node's RAM
Local disk
Non-local disk.

• RAM, disk, and interconnect all
need to be fast enough to keep
processors from starving

So what’s the big deal
about quantum chemistry?

• We want to understand the properties of
molecular systems

• Quantum models are very accurate, but
Properties from tens or hundreds of atoms are
possible, but they want more
Biologists need many more atoms.

• The more atoms, the more compute
intensive!

We can get very accurate results
We can do it in a reasonable amount of time
Pick one!

Quantum chemistry 101 x 10-3

• We want to understand the behavior of large molecular
systems

• The number of electrons governs the amount of calculation
Electrons are represented mathematically by basis functions

Basis functions combine forming wave functions, which describe the probabilistic
behavior of a molecule’s electrons
More basis functions make for better results, but much more computation.

• N is a product of atoms and basis functions
• The chemist chooses a computational method, trading off

accuracy against speed:

Computational Method Order of Scaling

Empirical Force Fields O(N) (number of atoms only)

Density Functional Theory O(N3)

Hartree-Fock O(N4)

Second-Order Hartree-Fock O(N5)

Coupled Cluster O(N7)

Configuration Interaction O(N!)

The awful arithmetic of scaling

• “This scales on the order of N7”
• How bad is that?
• Consider two values:

N = 40 (2 water molecules, 10 basis functions per oxygen, 5 per hydrogen)

N = 13200 (C6H14, 264 basis functions, 50 electrons)

Computational
Method

Order of
Scaling

“Difficulty” of
N=40

“Difficulty” of N=13200 How many atoms can we do?

Empirical
Force Fields

O(N)
40 13,200 1,000,000

Density
Functional
Theory

O(N3)

64,000 2,299,968,000,000 3,000

Hartree-Fock O(N4) 2,560,000 30,359,577,600,000,000 2,500

Second-Order
Hartree-Fock

O(N5)
102,400,000 400,746,424,320,000,000,000 800

Coupled
Cluster

O(N7)
163,840,000,000 69,826,056,973,516,800,000,000,000,000 24

Configuration
Interaction

O(N!)
8.15915 x 1047 Just forget it! 4

Pfister tells us there are
three ways to compute faster

• Use faster processors
Moore’s law gives us 2x the transistor count in our CPUs every 18 months
That’s not a fast enough rate of acceleration for us.

• Use faster code
Optimizing code can be slow, expensive, dirty work
It doesn’t pay off very consistently.

• Use more processors
The good news: Chip manufacturers are passing out cores like candy!
The bad news: Bandwidth ain’t keeping up!
Still, this gives us the biggest payoff
GPUs? There may be some promise there.

Sample scaling curves, 32 to 1024 cores

11

Si75O148H66 with DFT

3554 functions
2300 electrons

(H2O)9 with MP2

828 functions
90 electrons

C6H14 with CCSD(T)

264 functions
50 electrons

The method of choice is clearly to use
more processors, and wow, do we need them!

• User input tells us they want "several orders of magnitude"
more computation in a new system

• Cell membrane simulations need to be at least thousands
of atoms, with many electrons per atom

• We can just now, with a 160-teraflop system, start to
simulate systems with several hundred molecules and get
reasonable accuracy

• We want to do more than that. Much more than that!

Introducing a high-performance
computing cluster: Compute nodes

• Our clusters have hundreds or thousands of compute
nodes

• Each node has had:
One or more processor cores
Its own instance of the Linux kernel
Some gigabytes of RAM
A high-performance cluster interconnect (QSNet, Infiniband, etc.)
Local disk
Access to a shared parallel filesystem.

• We are currently at a RHEL 4.5 code base with a 2.6.9-67
kernel

(We’d like to be much more current).

Chinook
2323 node HP cluster

14

Feature Detail
Interconnect DDR InfiniBand (Voltaire, Mellanox)
Node Dual Quad-core AMD Opteron

32 GB memory
Local scratch
filesystems

440 MB/s, 1 TB/s aggregate
440 GB per node. 1 PB aggregate

Global scratch
filesystem

30 GB/s
250 TB total

User home
filesystem

1 GB/s
20 TB total

Computational
Unit 1

288
port IB
Switch

GigE

192 nodes
11 Racks

Chinook cluster architecture

15

/mscf
SFS

(Lustre)

20 TB
1GB/s

/dtemp
SFS

(Lustre)

250 TB
30 GB/s

Chinook
Ethernet

Core

Chinook InfiniBand Core
288

port IB
Switch

288
port IB
Switch

288
port IB
Switch

288
port IB
Switch

Computational
Unit 2

288
port IB
Switch

GigE

Computational
Unit 3

288
port IB
Switch

GigE

Computational
Unit 4

288
port IB
Switch

GigE

Computational
Unit 5

288
port IB
Switch

GigE

Computational
Unit 6 (CU6)

288
port IB
Switch

GigE Computational
Unit 7

288
port IB
Switch

GigE

Computational
Unit 8

288
port IB
Switch

GigE

Computational
Unit 9

288
port IB
Switch

GigE

Computational
Unit 10

288
port IB
Switch

GigE

Computational
Unit 11

288
port IB
Switch

GigE

Computational
Unit 12 (CU12)

288
port IB
Switch

GigE

2323 nodes, ~192 per CU

Login

40 Gbit

Central Storage

EMSL &
PNNL

Network

Admin

Typical cluster infrastructure

• Parallel batch jobs are our stock in
trade

Jobs run on anywhere from 64 to 18,000 cores
Jobs get queued up and run when our
scheduler software decides it’s time
The user gets the results at the end of the job.

• To support them, we provide:
High-performance shared parallel filesystem
Shared home filesystem
Batch queueing/scheduling software
Interconnect switches
System administrators
Scientific consultants
Parallel software.

Anatomy of a tightly coupled parallel job

Node 1

Node 2

Node 3

Node N

Startup Computation TeardownCommunication & I/O

Characterizing the
computation and data generation

• A typical chemistry job:
Starts with a small amount of data
Generates hundreds of gigabytes per node during computation
Condenses back down to kilobytes or megabytes of results.

• This requires us to provide large amounts of disk space and disk
bandwidth on the nodes

• Data have to come to a processor core from many places
• We are running tightly coupled computations, so at some point,

everybody waits for the slowest component!

Node 1

Node 2

Node 3

Node N

Startup Computation TeardownCommunication & I/O

Amdahl Bites!

• Here’s where parallelism breaks down
• Assume we have all the processors we want
• I/O and Communications come to dominate runtime, and

you can’t go any faster unless you speed those up
• That’s where we need help from the kernel community!

Node 1

Node 2

Node 3

Node N

Startup Computation TeardownCommunication & I/O

Our data problem

• We would ideally have memory bandwidth of 2-4 bytes per
FLOP/second per processor core

• Some systems in the 80's were close to this
• Ever since, we have been going the wrong direction!

Core clock speeds have far outstripped RAM speeds
Multicore processors make this much worse, since there more cores to feed, but
not significantly more memory bandwidth

• CPU caches help somewhat, but they have drawbacks:
Complicated memory hierarchies
Drastically different levels of performance, depending on where data needs to come
from.

• More often than not, data needs to come from off-node,
which is relatively slow

Good things the kernel does for us

• Well… It works!
That shouldn’t be overlooked, given that it’s a general-purpose kernel
It’s certainly no more troublesome than vendor-supplied closed solutions
We do like looking “under the covers” and tweaking and tuning.

• We love the idea of Asynchronous I/O
• Kernel RAID helps us very much

We have used mirrored pairs of disks for the OS
We use RAID-5 for our scratch filesystems on compute nodes
When a disk dies (this happens more than once per day), the MD device
carries on in degraded mode, allowing the job to finish
XFS is our scratch filesystem, we do a mkfs on it before each job to clean
it out.

Keeping up performances

• We exploit all features of the node as much as we possibly can
• Our applications "own" the node for the duration of a job, and

they are greedy
No more than one job is scheduled on a node at a time
They allocate all the RAM they can grab right up front and don't give it back until the
job is done
They may take all the cores (though for reasons of memory bandwidth, that may be
inefficient)

• We map and pin large contiguous regions of RAM for Infiniband
RDMA

• We frequently pre-calculate integrals and save them to local disk
for lookup later

Pressure on the kernel: Memory

• There’s never enough RAM!
• There is lots of competition for memory

OS/kernel
Daemons
Block I/O buffering & caching
Infiniband Queue Pairs
Application-shared memory segments
Mapped/pinned memory for Infiniband RDMA.

• We frequently have problems due to memory pressure
“It makes me really happy when linux denies malloc requests when it has 19GB of
cached data still (note this is with overcommit turned off).”

Pressure on the “kernel”: I/O

• A Lustre example
Lustre prior to 1.8 (by design) bypasses the kernel buffer cache on its storage
servers
This means if all the nodes in a parallel job need to copy a file, every node reads
every block of that file from disk!
We’ve seen 400 MB/sec on a single disk volume (good)
The bad part was that the volume was asked to do this (600 nodes all reading every
block of a 70-MB file because of poor caching).

Pressure on the kernel: OOM

• OOM conditions are too common and painful
Our experience is that the OOM-killer makes bad decisions
Currently, if we have OOM activity on the node, we mark it untrustworthy
and don't use it until it's rebooted
Can we tag user processes with a "kill me first" flag?

• We have seen behavior that makes it look like any paging
activity on a highly committed node causes random-
looking crashes

• The overcommit sysctls don't seem to be doing us any
favors, and we would like to understand them better

Appealing new technologies: Huge pages

• Good use of the Translation Lookaside Buffer (TLB) is vitally
important to us

TLB misses cause 2,000 – 3,000 cycles to be wasted on our AMD “Barcelona”
processors
The TLB has a fixed number of entries, but using larger pages lets us map much
more memory and avoid misses
Fortunately, the processors support large pages (2MB, 4MB, 1GB)
The hugepages feature in the kernel enables large page support.

• We have written test programs that show 4x - 7x speedup in
matrix multiply operations on random memory locations with
2MB page size (vs. the default 4 KB size)

This looks like a huge win, but it is cumbersome for our users to have to change
their code, guess how many hugepages to map, and run root-level commands to
set them up for each job they run
On the IA64, page size was a kernel compile-time setting. While this was not very
flexible, it was simple to deal with.
A compile-time or boot-time setting for default large page sizes sounds very
appealing to us.

Appealing new technologies: GPU

• Floating point operations can be offloaded to modern GPUs
The GPUs have lots of lightweight processor cores optimized for floating point math
If these are fast enough, maybe we can quit using local disk in all our nodes.

• High points
There’s a lot of floating point performance on tap!
They’re relatively cheap and plentiful.

• The key challenges are:
They can be power hungry
Does your algorithm lend itself to the parallelism these devices are good at?
Is there enough bandwidth to RAM to keep these from starving for data?

• Chemistry papers are starting to come out now citing speedups
of up to 102 if the algorithm is adapted to GPU!

Appealing new technologies:
Bus-resident SSD devices

• Using Solid State Disk (SSD) devices (e.g. Fusion-IO) as
some kind of cache

• They should be blindingly fast (compared to rotating disk)
if:

They reside in a bus slot, not on a disk controller
They aren’t hampered by elevators or schedulers that assume they have
sector layouts and rotational latency.

• How would the kernel support these?
sd block I/O?
Shmem()?
Mmap()?
Other?

Appealing new technologies:
POSIX filesystem extensions for HPC

• Shared filesystems on large clusters frequently bottleneck on
metadata operations

This gets even worse on striped parallel filesystems
For example, stat() calls may have to talk to multiple servers to get the latest
[c,a,m]time, file size, etc.
That gets very slow if there’s a lot of contention.

• A lot of time can be saved if a quicker, less-accurate result is
“good enough”

• The proposed HEC POSIX I/O API Extensions
(http://www.pdl.cmu.edu/posix) implement I/O calls that allow
relaxed semantics, or inform the filesystem about access
patterns to improve performance

readx(), writex() de-serialize vector I/O
statlite(), readdirplus() allow faster, less accurate stat() operations
“Lazy” I/O (O_LAZY flag, lazyio_propagate(), lazyio_synchronize()) relaxes
coherency restraints.

• This is a proposed solution, perhaps controversial, but it’s an
option we’d like to have!

http://www.pdl.cmu.edu/posix

Takeaway messages

• Our applications have an insatiable demand for cycles
• Memory bandwidth is crucial to us
• Parallelization (probably on many levels) is the only way to

get where we want to go
• The kernel is the “gatekeeper” to high performance, since

it mediates the I/O and communications that hold us back
• If we can use other features in the node to save compute

time, we will use them to the fullest
• Making huge pages easier to use should help our

application performance tremendously
• GPUs and SSDs look very promising to us, provided they

are not hamstrung by antiquated assumptions

David Cowley
Pacific Northwest National Laboratory

david.cowley@pnl.gov

Questions?

This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's
Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

	Tux Faces the Rigors of Terascale Computation:��High-Performance Computing and the Linux Kernel
	EMSL is a national scientific user facility at the Pacific Northwest National Laboratory
	Characteristics of EMSL
	High-performance computing in EMSL
	Defining high-performance �computing hardware for EMSL science
	The need for a balanced system
	So what’s the big deal �about quantum chemistry?
	Quantum chemistry 101 x 10-3
	The awful arithmetic of scaling
	Pfister tells us there are �three ways to compute faster
	Sample scaling curves, 32 to 1024 cores
	The method of choice is clearly to use �more processors, and wow, do we need them!
	Introducing a high-performance �computing cluster: Compute nodes
	Chinook
	Chinook cluster architecture
	Typical cluster infrastructure
	Anatomy of a tightly coupled parallel job
	Characterizing the �computation and data generation
	Amdahl Bites!
	Our data problem
	Good things the kernel does for us
	Keeping up performances
	Pressure on the kernel: Memory
	Pressure on the “kernel”: I/O
	Pressure on the kernel: OOM
	Appealing new technologies: Huge pages
	Appealing new technologies: GPU
	Appealing new technologies: �Bus-resident SSD devices
	Appealing new technologies:�POSIX filesystem extensions for HPC
	�Takeaway messages
	Questions?

