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Tagged with “experimental”

 Oops still remains some.
 Fsck is at experimental stage.
 Immature for production use.
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Our goal

 Improve btrfs to be fit for production use.
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Btrfs that enterprise requests for

 Good performance
 Reliability
 Scalability
 Fault tolerance
 Features

– Snapshot

– Integrated multiple devices support 

– transparent compression

– etc
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Our progress

 Error handling infrastructure
 Free space cluster per node
 Snapshot aware defrag
 Inode cache
 Per file cow and compression control
 Extent buffer cache
 Rbtree lock contention
 A great amount of bug fixes and cleanups
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Progress:
Error handling infrastructure

• Forced readonly mounts on errors
– Being fault tolerant of disk corruptions

– Build a framework which can flip btrfs to 
readonly when there are errors

– Replace BUG() and BUG_ON()
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Progress: 
free space cluster per node

 Reduce metadata fragments

 Improve (small files) sequencial read 
performance
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WAFL(Write Anywhere File Layout)
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(Based on 2.6.38)
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Progress:
snapshot aware defrag

• Make defragment code preserve the sharing 
among snapshots.

– Btrfs has designed back references for this
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Progress:
inode cache

• Without inode cache,
– Will not reclaim inode number when deleting 

files

– It will not reuse inode number
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Progress:
Per file cow and compression control

• Beside mount options, we need to control 
these flags on a per-inode basis.
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Progress:
extent buffer cache

• Extent buffer is a basic unit of metadata

• Expensive on searching and reading

• Cache misses depend on workloads
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What is extent buffer
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Progress:
rbtree lock contention
• Why

– Lock contention is really critical on performance

• How 
– Some rbtrees are domained by reads

– Lockless read

• What
– Build 'read mostly' circumstance

• Find where the write locks are held

• Try to reduce them as much as possible

– Apply RCU, or rwlock
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extent state

Flags

Flags: 
● EXTENT_DIRTY,
● EXTENT_LOCKED,
● EXTENT_UPTODATE,
● EXTENT_DELALLOC,
● etc.

rb_node

Rbroot

rbnode rbnode

rbnoderbnode rbnode rbnode
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Set A blocked for IO
(EXTENT_LOCKED)

read_page

       ...
submit_bio

bio_end_io
● Set A uptodate

● Unset A blocked

Set B blocked for IO
(EXTENT_LOCKED) read_page

       ...
submit_bio

bio_end_io

● Set B uptodate

● Unset B blocked

Extent state tree rbroot

A B
Race on tree's lock between 

A and B

tree->lock 

tree->lock
(for write) 

tree->lock
(for read) 
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Problems we're facing with

 Over reservation leads to  ENOSPC

 Lock contention in kernel data structures

–Resort to rcu + rbtree / btree / skiplist for lockless 
read?

–Reduce lock granularity
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Problems we're facing with:
Over reservation leads to ENOSPC

 Btrfs is based on B+ tree
 COW on WAFL
 We are not able to know the precise number of 

space we're going to use
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Based on B+ tree

Copy On Write (COW)

The precise number of space =   ?

Because...

Then...we have some available space that cannot be 
allocated :(

used availableDisk 

Over
reservation
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Problems we're facing with:
Lock contention in kernel data structures

• Lock contention in in-core rbtrees
– Extent state tree

– Free space tree

– etc

• Possible ways for lockless read
– Probabilistic skiplist with RCU lock

– Rbtree with RCU lock

– Btree with RCU lock

– Smaller lock granularity
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Future work

• Fork a buddy system on space allocation

• Lockless metadata

• Btrfsck (offline/online)

• Performance
– overall better than ext3 and ext4
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The whys and wherefores of using btrfs

 Good performance
 Good scalability
 Good reliability
 High fault tolerance
 Ease of management
 Base stone of distributed file systems like 

Ceph, etc.
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Thanks!

• Liu Bo <liubo2009@cn.fujitsu.com>

• btrfs.wiki.kernel.org

mailto:liubo2009@cn.fujitsu.com
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