
On The Way to a Healthy Btrfs
Towards Enterprise

Liu Bo

2

Tagged with “experimental”

 Oops still remains some.
 Fsck is at experimental stage.
 Immature for production use.

3

Our goal

 Improve btrfs to be fit for production use.

4

Btrfs that enterprise requests for

 Good performance
 Reliability
 Scalability
 Fault tolerance
 Features

– Snapshot

– Integrated multiple devices support

– transparent compression

– etc

5

Our progress

 Error handling infrastructure
 Free space cluster per node
 Snapshot aware defrag
 Inode cache
 Per file cow and compression control
 Extent buffer cache
 Rbtree lock contention
 A great amount of bug fixes and cleanups

6

Progress:
Error handling infrastructure

• Forced readonly mounts on errors
– Being fault tolerant of disk corruptions

– Build a framework which can flip btrfs to
readonly when there are errors

– Replace BUG() and BUG_ON()

7

Box
Box with
faults

Readonly
Box

Box
Box with
faults

 ?
Uncertain state

umount

fsck

w/o patch

w patch

8

Progress:
free space cluster per node

 Reduce metadata fragments

 Improve (small files) sequencial read
performance

9

WAFL(Write Anywhere File Layout)

node

Leaf A Leaf B Leaf C

Disk
layout

AB C

Block allocatorA B Cnode

node

10

node

Leaf A Leaf B Leaf C

Disk
layout

C

Block allocatorA B Cnode

node B A

Cluster of node

11

node

Leaf A Leaf B Leaf C

Disk
layout

C

Block allocatorA B Cnode

node B A

Cluster of node

node

Leaf A Leaf B Leaf C

Disk
layout

AB C

Block allocatorA B Cnode

node

12

(Based on 2.6.38)

13

Progress:
snapshot aware defrag

• Make defragment code preserve the sharing
among snapshots.

– Btrfs has designed back references for this

14

Fs root snap

DATA*

S-unaware defrag

DATA

Fs root snap

DATA

Original layout

Data with fragments

Snapshot unaware defragment

15

Fs root snap

DATA*

S-aware defrag

Space efficient

Fs root snap

DATA

Original layout

Data with fragments

Snapshot aware defragment

16

memory

dirty writeback

endio

Fs root snap

DATA

Original layout

Data with
fragments

Fs root snap

DATA*

S-unaware defrag

DATA

Fs root snap

DATA*DATA

How does defragment work

17

memory

dirty writeback

endio

Fs root snap

DATA

Original layout

Data with
fragments

Fs root snap

DATA*

S-aware defrag
Fs root snap

Back
references

DATA*DATA

18

Progress:
inode cache

• Without inode cache,
– Will not reclaim inode number when deleting

files

– It will not reuse inode number

19

A(257) B(258)

id++

A(257) B(257)

Inode number
allocator

Inode number
allocator

rm A: rm A:

w/o inode cache w inode cache

20

Progress:
Per file cow and compression control

• Beside mount options, we need to control
these flags on a per-inode basis.

21

A
B

C

D

E

/

A
B

C

D

E

/

Mount -o nodatacow

F

G

F

G

Mount -o compress

A
B

C

D

E

A
B

C

D

E

Chattr -c E

F

G

F

G

Chattr -C E

/ /

w/o patch
w patch

22

Progress:
extent buffer cache

• Extent buffer is a basic unit of metadata

• Expensive on searching and reading

• Cache misses depend on workloads

23

What is extent buffer

... ...Level=0

Level=2

Level=1 node

leaf

Extent buffer

In-memory

...

24

Progress:
rbtree lock contention
• Why

– Lock contention is really critical on performance

• How
– Some rbtrees are domained by reads

– Lockless read

• What
– Build 'read mostly' circumstance

• Find where the write locks are held

• Try to reduce them as much as possible

– Apply RCU, or rwlock

25

extent state

Flags

Flags:
● EXTENT_DIRTY,
● EXTENT_LOCKED,
● EXTENT_UPTODATE,
● EXTENT_DELALLOC,
● etc.

rb_node

Rbroot

rbnode rbnode

rbnoderbnode rbnode rbnode

26

Set A blocked for IO
(EXTENT_LOCKED)

read_page

 ...
submit_bio

bio_end_io
● Set A uptodate

● Unset A blocked

Set B blocked for IO
(EXTENT_LOCKED) read_page

 ...
submit_bio

bio_end_io

● Set B uptodate

● Unset B blocked

Extent state tree rbroot

A B
Race on tree's lock between

A and B

tree->lock

tree->lock
(for write)

tree->lock
(for read)

27

Problems we're facing with

 Over reservation leads to ENOSPC

 Lock contention in kernel data structures

–Resort to rcu + rbtree / btree / skiplist for lockless
read?

–Reduce lock granularity

28

Problems we're facing with:
Over reservation leads to ENOSPC

 Btrfs is based on B+ tree
 COW on WAFL
 We are not able to know the precise number of

space we're going to use

29

Based on B+ tree

Copy On Write (COW)

The precise number of space = ?

Because...

Then...we have some available space that cannot be
allocated :(

used availableDisk

Over
reservation

30

Problems we're facing with:
Lock contention in kernel data structures

• Lock contention in in-core rbtrees
– Extent state tree

– Free space tree

– etc

• Possible ways for lockless read
– Probabilistic skiplist with RCU lock

– Rbtree with RCU lock

– Btree with RCU lock

– Smaller lock granularity

31

Future work

• Fork a buddy system on space allocation

• Lockless metadata

• Btrfsck (offline/online)

• Performance
– overall better than ext3 and ext4

32

The whys and wherefores of using btrfs

 Good performance
 Good scalability
 Good reliability
 High fault tolerance
 Ease of management
 Base stone of distributed file systems like

Ceph, etc.

33

Thanks!

• Liu Bo <liubo2009@cn.fujitsu.com>

• btrfs.wiki.kernel.org

mailto:liubo2009@cn.fujitsu.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

