

Linux Kernel
Maintainers

Greg Kroah-Hartman
gregkh@linuxfoudation.org

Why are they so grumpy?

What you can do to avoid this.

What maintainers owe you.

2.6.20 to 2.6.24rc8

2,833 developers
 373 companies

Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

5.79 changes per hour

2.6.20 to 2.6.24rc8
Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

7.21 changes per hour

3.4.0 release

2.6.20 to 2.6.24rc8

Patches I received in the past 2 weeks

2.6.20 to 2.6.24rc8

Patches I received in the past 2 weeks

487

2.6.20 to 2.6.24rc8

Subject: [PATCH 48/48] ...

2.6.20 to 2.6.24rc8

15 patch series, no order given

2.6.20 to 2.6.24rc8

Patches 1, 3-10

2.6.20 to 2.6.24rc8

“Signed-off-by:” in signature

2.6.20 to 2.6.24rc8

Signature saying email was confidential

2.6.20 to 2.6.24rc8

Tabs were converted to spaces

2.6.20 to 2.6.24rc8

Leading spaces removed

2.6.20 to 2.6.24rc8

diff in non-unified format

2.6.20 to 2.6.24rc8

Patch created in driver directory

2.6.20 to 2.6.24rc8

Patch created in /usr/src/linux-2.6.32

2.6.20 to 2.6.24rc8

Made against different tree

2.6.20 to 2.6.24rc8

Wrong coding style

2.6.20 to 2.6.24rc8

Wrong coding style,
and acknowledged it

2.6.20 to 2.6.24rc8

Would not compile

2.6.20 to 2.6.24rc8

Broke the build on patch 3/6

2.6.20 to 2.6.24rc8

Broke the build on patch 3/6
and fixed it on 6/6

2.6.20 to 2.6.24rc8

Broke the build on patch 5/8

2.6.20 to 2.6.24rc8

Broke the build on patch 5/8
Contained note that fix would be sent later

2.6.20 to 2.6.24rc8

Patches that had nothing to do with me

2.6.20 to 2.6.24rc8

1 patch, 450kb big (4500 lines added)

2.6.20 to 2.6.24rc8

Obviously wrong kerneldoc

2.6.20 to 2.6.24rc8

This was a calm two weeks

2.6.20 to 2.6.24rc8

It is in my self-interest
to ignore your patch

2.6.20 to 2.6.24rc8

Give me no excuse
to reject your patch

2.6.20 to 2.6.24rc8

Proper coding style

2.6.20 to 2.6.24rc8

scripts/checkpatch.pl clean

2.6.20 to 2.6.24rc8

Sent to proper people and lists

2.6.20 to 2.6.24rc8

Sent to proper people and lists

scripts/get_maintainer.pl

2.6.20 to 2.6.24rc8

Proper Subject:

2.6.20 to 2.6.24rc8

Proper changelog comment

2.6.20 to 2.6.24rc8

Description of WHY it is needed

2.6.20 to 2.6.24rc8

Small incremental change

2.6.20 to 2.6.24rc8

“obviously” correct

2.6.20 to 2.6.24rc8

Which tree it was made against

2.6.20 to 2.6.24rc8

If multiple patches, state the order

2.6.20 to 2.6.24rc8

Has to build properly

2.6.20 to 2.6.24rc8

Make sure it works, if possible

2.6.20 to 2.6.24rc8

Don't ignore review comments

2.6.20 to 2.6.24rc8

Don't resend without saying why

2.6.20 to 2.6.24rc8

What I will do for you:

2.6.20 to 2.6.24rc8

Review your patch within 1-2 weeks

2.6.20 to 2.6.24rc8

Offer semi-constructive criticism

2.6.20 to 2.6.24rc8

Let you know the status of your patch

2.6.20 to 2.6.24rc8

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24rc8

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24rc8

github.com/gregkh/presentation-maintainer

Linux Kernel
Maintainers

Greg Kroah-Hartman
gregkh@linuxfoudation.org

When I first started writing this talk, it quickly
turned into one big long rant. I ended up
listing all of the different problems that I
had with patches that people had sent me
over the past few years.

While this would have been a very fun and
cathartic talk for me, I figured that you all
just watching me complain for 30 minutes
wouldn't be the most entertaining thing, so I
figured I would try to tone it down.

Why are they so grumpy?

What you can do to avoid this.

What maintainers owe you.

2.6.20 to 2.6.24rc8

So, let's talk about the main problem that people
seem to have with Linux kernel maintainers, why
are they so grumpy? Hopefully by the end of this
talk, you will have an idea of why this always
happens, and what you can do to avoid having that
anger be directed at you.

Also, I'm going to cover what you should expect from
a good kernel maintainer, so if you are a
maintainer, here's something that developers can
use to get back at you, and me, as I figure it's only
fair.

I am going to complain a lot in this talk. Please don't
get the impression that I don't like doing this type of
work. I love it. It's the best job in the world that I've
ever had, and I can't think of anything that I would
rather be doing.

2,833 developers
 373 companies

Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

This makes the Linux kernel the largest
contributed body of software out there that
has been created..

This is just the number of companies that we
know about, there are more that we do not,
and as the responses to our inquiries come
in, this number will go up.

5.79 changes per hour

2.6.20 to 2.6.24rc8
Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

For that year of development, we went at this
rate, 24 hours a day, 7 days a week. This is
up from last year, which was at 5.2 or so, so
we are increasing, which is scary, right?

7.21 changes per hour

3.4.0 release

2.6.20 to 2.6.24rc8

This past 3.4 release was the fastest we have
ever created. That number shows just how
well the Linux kernel development model is
working. We are growing in developers and
in how fast we are developing overall.

Now this is just the patches we accepted, not
all of the patches that have been submitted,
lots of patches are rejected, as anyone who
has ever tried to submit a patch can attest
to.

Here's a picture of our development model, in
a simplified form.

We have about 3000 different developers.
They make a patch, and send it through
email to the file/driver maintainer. We have
about 700 different maintainers listed in the
kernel tree at the moment. That maintainer
reviews it, and if they accept it, they forward
it on to the subsystem maintainer. We have
around 130 different subsystem maintainers
at the moment.

Those maintainers have public kernel trees
that all get merged into the linux-next
release every day. Then, when the merge
window opens up, the subsystem
maintainers send their stuff to Linus.

Patches I received in the past 2 weeks

2.6.20 to 2.6.24rc8

So, let's look at one of these subsystem
maintainers. I maintain the USB, driver core, tty,
staging, and a few other various parts of the
Linux kernel.

These past 2 weeks is the timeframe when we had
our big merge window, when all of the subsystem
maintainers sent patches off to Linus. During
this time frame, no core kernel developer sends
new stuff to subsystem maintainers, as they know
they are busy, and nothing that gets sent can
really be looked at until after the merge window
closes.

So, almost all of the patches I got in the past 2
weeks were not from developers that do a whole
lot of kernel work, nor were the, for the most
part, large patches with new things being
proposed for the kernel.

Patches I received in the past 2 weeks

487

2.6.20 to 2.6.24rc8

Yeah, that's the number of patches I got
during the "slow" period of the kernel
development cycle. This does not include
the number of messages around those
patches as other developers commented on
them, or other various things about those
patches (like "have you applied my patch
yet?" messages.)

Now the large majority of these patches at
first glance look just fine. But I took a closer
look at them, and here's a short list of the
problems in the patches that were sent to
me.

Subject: [PATCH 48/48] ...

2.6.20 to 2.6.24rc8

There were no 47 previous patches sent.

15 patch series, no order given

2.6.20 to 2.6.24rc8

Am I supposed to guess?

Patches 1, 3-10

2.6.20 to 2.6.24rc8

Number 2 never showed up.

“Signed-off-by:” in signature

2.6.20 to 2.6.24rc8

This would require me to hand edit the patch
before I could apply it.

Signature saying email was confidential

2.6.20 to 2.6.24rc8

That kind of goes against how you are
supposed to be sending Linux kernel
patches out to the world.

Tabs were converted to spaces

2.6.20 to 2.6.24rc8

This makes applying the patch impossible.

Exchange does this for you, if you are working
for a corporation that has an Exchange
server, do what IBM, Intel, and Microsoft
have done in order to be able to contribute
to Linux kernel development, have a Linux
box somewhere in the corner that your
developers use as a mail server to send
patches out from.

Huawei is the only company that I know of
that successfully sends kernel patches
through an Exchange server, which is
amazing, I really don't know how they do it.

Leading spaces removed

2.6.20 to 2.6.24rc8

This also makes applying the patch
impossible. I end up editing a lot of patches
by hand, cursing all the while, just to get
them to apply because of broken email
servers and clients.

diff in non-unified format

2.6.20 to 2.6.24rc8

I honestly didn't know that diff could still
create output in this format anymore, I
assumed that as no one ever found it useful,
it wasn't used anymore.

Patch created in driver directory

2.6.20 to 2.6.24rc8

Patches need to be created in the root of the
kernel source tree, as that's where I have to
be in order to apply them properly.

This seems to happen a lot to first-time patch
submitters, it's a very common problem.

Patch created in /usr/src/linux-2.6.32

2.6.20 to 2.6.24rc8

How many different problems can you see
here in just this one example?

Old and obsolete kernel version, full path to
root, developer doing kernel work as root,
probably more.

Made against different tree

2.6.20 to 2.6.24rc8

Someone made a patch against the scsi
subsystem development tree when sending
me a USB patch. Why they thought that was
a good idea I have no idea.

Wrong coding style

2.6.20 to 2.6.24rc8

There's no excuse for doing something like
this anymore, we have automated tools that
fix this up for you.

Wrong coding style,
and acknowledged it

2.6.20 to 2.6.24rc8

At least in this patch, the author knew they
were doing something wrong, It's just that
they thought they were more important than
the 3000 other kernel developers and didn't
have to play by the rules of everyone else.

Would not compile

2.6.20 to 2.6.24rc8

Just looking at the patch it was obvious that it
had never been compiled, and sure enough,
the compiler spit out a bunch of errors.

Broke the build on patch 3/6

2.6.20 to 2.6.24rc8

This was a series of patches, and the build
broke on the 3rd patch that was applied.

Broke the build on patch 3/6
and fixed it on 6/6

2.6.20 to 2.6.24rc8

But, I looked closer, and the developer at
least realized this, and fixed it in their last
patch in the series, thinking that all was
now good, as it didn't really matter that for
the past 3 patches, the build was broken.

Broke the build on patch 5/8

2.6.20 to 2.6.24rc8

There was another patch series that also
broke the build in the middle of it.

Broke the build on patch 5/8
Contained note that fix would be sent later

2.6.20 to 2.6.24rc8

But this one was better, it had a note saying
that they knew the build was broken, and
they would fix it up later, at some unknown
time in the future, but these 8 patches
should be accepted now anyway.

Patches that had nothing to do with me

2.6.20 to 2.6.24rc8

Now I know I maintain a lot of different parts
of the kernel, but for some reason someone
sent me a patch for the x86 core code,
copied to no one else, thinking that I was
the one that could accept it.

1 patch, 450kb big (4500 lines added)

2.6.20 to 2.6.24rc8

Luckily, another developer told the author
that this was too big and needed to be
broken up into smaller pieces before anyone
would review it. And then, three different
developers went and reviewed it anyway, so
I don't think the author learned that lesson
at all.

Obviously wrong kerneldoc

2.6.20 to 2.6.24rc8

kerneldoc is the format that you can write
comments in the code and get them
included in the kernel api documentation
that is automatically generated. When you
get the format of it wrong, the tools will tell
you.

Here was someone who was trying to write
documentation, but got the format wrong,
and hadn't even run the tools to see if it was
generated properly.

This was a calm two weeks

2.6.20 to 2.6.24rc8

Now, I'm not asking you to take pity on me, just
realize that this is the level of incompetence that
every single one of those 700 developers
encounter all the time.

So when you think we are acting grumpy, remember,
how would you act if you had to deal with this all of
the time?

Let's get back to what the goal is here. You want to
create a patch that is accepted as it does
something that you want to do in Linux. The
maintainer wants to reject it.

It is in my self-interest
to ignore your patch

2.6.20 to 2.6.24rc8

Seriously. It's easier for the maintainer to not accept
your code at all. To accept it, it takes time to review
it, apply it, send it on up the development chain,
handle any problems that might happen with the
patch, accept responsibility for the patch, possibly
fix any problems that happen later on when you
disappear, and maintain it for the next 20 years.

That's a lot of work that you are asking someone else
to do on your behalf. You are asking someone who
doesn't usually work for your company, who
probably lives in a different country, who you have
never met in person, to assume responsibility for
your work, and to do extra work on top of the
normal work they do in the kernel every day.

So you can see how it's in my interest to ignore your
patch. And it's in your interest to keep me from
ignoring it, because you want it accepted.

Give me no excuse
to reject your patch

2.6.20 to 2.6.24rc8

So your goal is, when sending a patch, is to give me
NO excuse to not accept it. To make it such that if I
ignore it, or reject it, I am the one that is the
problem here, not you.

What can you do to keep me from rejecting your
patch outright

.
First off, don't do any of the things I listed above,

that's obvious, right? But that's a "do not do" list,
how about a list of what to do:

Proper coding style

2.6.20 to 2.6.24rc8

This is documented, there should not be any reason
to ever get this wrong.

Or to think that you are above following the rules,
that's just asking for the patch to be rejected.

scripts/checkpatch.pl clean

2.6.20 to 2.6.24rc8

We even have a tool that automatically checks
your patch to ensure that you got the coding
style correct, and that other common
problems are avoided.

If you don't run this tool, the maintainer will,
and will get mad when it finds problems that
you should have solved before sending it to
them.

Sent to proper people and lists

2.6.20 to 2.6.24rc8

I have an email bot that if you ever send a
patch to only me, and not any mailing list,
instantly rejects it and tells you to resend it
and copy the proper people and mailing
lists.

Linux kernel development is done in public,
not private, and it doesn't scale to send
patches or emails to only individual
developers. We all have subsystem-specific
mailing lists, use them, that way other
people can review your patches, and
comment on them, and you don't
overburden the individual subsystem
maintainers any more than they already are.

Sent to proper people and lists

scripts/get_maintainer.pl

2.6.20 to 2.6.24rc8

Look, we even have a tool that you run on
your patch, and it digs through the
MAINTAINERS file and the git history, and
figures out who to send the patch to, and
what mailing lists to copy at the same time.

Use it.

Proper Subject:

2.6.20 to 2.6.24rc8

Make the subject of your patch something
that makes sense.

Don't send me a 20 patch series that for every
individual patch says, "Fixes problems in
driver" like some people have done in the
past.

Proper changelog comment

2.6.20 to 2.6.24rc8

In the body of the email, describe the patch,
what it does. And most importantly:

Description of WHY it is needed

2.6.20 to 2.6.24rc8

Too many times we see patches that say
exactly what the patch does. Which is
stupid because we know how to read code,
what we want to know is why the change is
being made, and from that we can
determine if it really is needed or not.

Small incremental change

2.6.20 to 2.6.24rc8

Patches are not supposed to be big huge
rewrites of things. That's not how we do
development. You need to make each patch
a small one-item change.

Break your larger change up into a set of
small, individual, steps. Like your math
professor said, "show your work". We want
to see all the steps you make along the way
to complete your larger goal.

“obviously” correct

2.6.20 to 2.6.24rc8

Make it the patch is so simple and obvious that I
would be foolish to reject it. I need to read it and
say, "of course, I can't belive we didn't do that in the
past, how stupid we never did this before!"

Which tree it was made against

2.6.20 to 2.6.24rc8

If you create a patch against a different
development tree than the person you are
sending it to, let them know. If you made it
against an obsolete vendor enterprise kernel
release, tell them. Don't make them guess.

If you make me guess, I will guess wrong,
that's just the way it goes.

If multiple patches, state the order

2.6.20 to 2.6.24rc8

Number your patches, don't rely on my email
client receiving them in the same order that
you sent them in. I guarantee that will not
happen properly.

git send-email does this correctly for you, use
that to send your patches out.

Has to build properly

2.6.20 to 2.6.24rc8

At least build the change before you send it to
me. Because if it breaks the build, it just
makes me more likely to not want to apply
anything else you send me in the future, as
you are just wasting my time.

Make sure it works, if possible

2.6.20 to 2.6.24rc8

If you have the hardware, test the patch. Now
that isn't always possible, and that's fine, we
make changes to drivers for hardware that
we don't have access to all the time, which
seems to surprise a lot of people.

Go back to that "obviously correct" item, if
you don't have the hardware, stick to that
rule and you will be fine.

Don't ignore review comments

2.6.20 to 2.6.24rc8

Lots of time I see patches sent out on Friday
afternoon, and then the author disappears
on a 2 week vacation. So, when I spend the
time reviewing the patches, I get back a
vacation bounce message.

And, if the email does go through, don't
ignore it. Acknowledge it, either agreeing
or pushing back on the comments.

 If you don't acknowledge the effort I just
spent in reviewing your submission, that will
make me very unlikely to ever want to
review it again in the future.

Don't resend without saying why

2.6.20 to 2.6.24rc8

If you take my review comments, and resend
the patch, and don't say what you did
different from the first patch submission, I'll
think that you just ignored everything that I
said in the past and just delete the patch
from my mailbox. Based on the patch load I
get, I can't remember what I wrote about
your specific patch, so don't assume that I
do.

What I will do for you:

2.6.20 to 2.6.24rc8

So, finally, you created the perfect patch
series, took all review into account, and sent
it correctly, without corrupting the patch.

What should you expect from me, the
subsystem maintainer?

Review your patch within 1-2 weeks

2.6.20 to 2.6.24rc8

Some subsystem maintainers try to get to
patches even faster than this, but with travel
and different conferences, the best that I
can normally do is about 1-2 weeks.

If I don't respond in that time frame, just ask
what is going on. I have no problem with
people asking about their patch status.
Sometimes patches end up getting dropped
on the floor accidentally, and if I'm being
slow I have no problem with being called on
it, so don't feel bad about checking up on it.

But please wait 1-2 weeks, don't be rude and
send a patch at night, and then in the
morning send a complaining email asking
why it wasn't reviewed already. This
happens more than you want to know.

Offer semi-constructive criticism

2.6.20 to 2.6.24rc8

I can't always promise constructive criticism,
but I'll try my best.

Let you know the status of your patch

2.6.20 to 2.6.24rc8

I have a set of scripts that I got from Andrew
Morton that will email you when I apply your
patch to one of my development trees saying
where it has been applied and when you can
expect to see it show up in Linus's tree. There is
no reason that all kernel maintainers shouldn't do
this, and it's nice to see that more and more are.

But, I know from personal experience, there are
maintainers in this room that I send patches to
and I never know what happens to them. A few
months later I will see them show up in Linus's
tree, usually after I forgot about them.

That's not acceptable, and you should not allow
this, push back on your subsystem maintainer to
use something like this, to keep you informed.
Andrew's scripts are public, as are my variations
of them, for everyone to use.

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24rc8

Linus said this after I wrote a small rant about some
truly horrible Linux kernel driver code that I found
online.

It had all sorts of "this code is never to be included in
the Linux kernel" warnings all over it, despite it
being a Linux kernel driver. And in reading the
code, it was obvious why the author never wanted it
in the kernel, it was one of the worse things I had
ever seen, and that says a lot. After I complained
about it, I felt bad, as someone had obviously spent
a lot of time on it, but Linus replied with the above
quote.

And as always, it turns out that Linus is right.

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24rc8

If that author had ever thought that the code would
have been posted publicly, they wouldn't have
written such crap. That's what maintainers and
public code review is really for in the end, keeping
the crap out of the Linux kernel, which benefits
everyone involved.

So while it seems that we kernel developers can be a
real harsh bunch of people, it is because of that
harshness that Linux is as good as it is.

You want us to be tough, because it makes you
better programmers in the end, knowing you will
have to defend your code.

And that is why I love doing this work, it makes
everyone involved produce the best possible code,
which in the end, is what matters the most.

github.com/gregkh/presentation-maintainer

Obligatory Penguin Picture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

