

Linux Kernel
Development

Greg Kroah-Hartman
gregkh@linuxfoudation.org

github.com/gregkh/kernel-development

 38,566 files
15,384,000 lines

2.6.20 to 2.6.24rc8
Kernel release 3.4.0

2,833 developers
 373 companies

Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

10,500 lines added
 8,400 lines removed
 2,300 lines modified

2.6.20 to 2.6.24rc8Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

10,500 lines added
 8,400 lines removed
 2,300 lines modified

every day

2.6.20 to 2.6.24rc8Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

5.79 changes per hour

2.6.20 to 2.6.24rc8
Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

How we stay sane

2.6.20 to 2.6.24rc8

Time based releases
Incremental changes

New release every
2¾ months

Kernel releases 2.6.20 – 3.4.0

commit ecf85e481a716cfe07406439fdc7ba9526bbfaeb
Author: Robert Jarzmik <robert.jarzmik@free.fr>
AuthorDate: Tue Apr 21 20:33:10 2009 -0700
Commit: Greg Kroah-Hartman <gregkh@suse.de>
CommitDate: Thu Apr 23 14:15:31 2009 -0700

 USB: otg: Fix bug on remove path without transceiver

 In the case where a gadget driver is removed while no
 transceiver was found at probe time, a bug in
 otg_put_transceiver() will trigger.

 Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
 Acked-by: David Brownell <dbrownell@users.sourceforge.net>
 Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

--- a/drivers/usb/otg/otg.c
+++ b/drivers/usb/otg/otg.c
@@ -43,7 +43,8 @@ EXPORT_SYMBOL(otg_get_transceiver);
 void otg_put_transceiver(struct otg_transceiver *x)
 {
- put_device(x->dev);
+ if (x)
+ put_device(x->dev);
 }

Developer's Certificate of Origin

(a) I created this change; or

(b) Based this on a previous work with a
 compatible license; or

(c) Provided to me by (a), (b), or (c) and not
 modified

(d) This contribution is public.

Top developers by quantity
Mark Brown 1026
Axel Lin 723
K. Y. Srinivasan 626
Al Viro 607
Takashi Iwai 517
Mauro Chehab 507
Russell King 419
Johannes Berg 469
Ben Skeggs 405
Jonathan Cameron 396

Kernel releases 3.0.0 – 3.4.0

Top Signed-off-by:
Greg Kroah-Hartman 4767
David S. Miller 3857
John Linville 3252
Mauro Carvalho Chehab 2412
Mark Brown 2230
Linus Torvalds 1984
Andrew Morton 1573
James Bottomley 1089
Takashi Iwai 953
Russell King 930

Kernel releases 3.0.0 – 3.4.0

Who is funding this work?
1. “Amateurs” 14.2%
2. Red Hat 10.1%
3. Intel 8.6%
4. Unknown Individuals 5.2%
5. Novell 4.0%
6. IBM 3.7%
7. Texas Instruments 3.6%
8. Broadcom 3.0%
9. Consultants 2.3%
10. Wolfson Micro 2.1%

Kernel releases 3.0.0 – 3.4.0

Who is funding this work?
11. Samsung 1.9%
12. Google 1.8%
13. Oracle 1.7%
14. Freescale 1.5%
15. MiTAC 1.4%
16. Qualcomm 1.4%
17. Microsoft 1.3%
18. Linaro 1.2%
19. Nokia 1.2%
20. AMD 1.1%

Kernel releases 3.0.0 – 3.4.0

Getting involved

2.6.20 to 2.6.24rc8

Run the kernel.org release on your machine

Getting involved

2.6.20 to 2.6.24rc8

 2.6.20 to 2.6.24rc8

Documentation/HOWTO

Documentation/development-process

Getting involved

 2.6.20 to 2.6.24rc8

Getting involved

kernelnewbies.org

http://www.kernelnewbies.org/

 2.6.20 to 2.6.24rc8

Getting involved
Google “write your first kernel patch”

 2.6.20 to 2.6.24rc8

Getting involved
kernelnewbies.org/KernelJanitors/Todo

 2.6.20 to 2.6.24rc8

Linux Driver Project

drivers/staging/*/TODO

Getting involved

github.com/gregkh/kernel-development

Linux Kernel
Development

Greg Kroah-Hartman
gregkh@linuxfoudation.org

github.com/gregkh/kernel-development

I'm going to discuss the how fast the kernel is
moving, how we do it all, and how you can
get involved.

 38,566 files
15,384,000 lines

2.6.20 to 2.6.24rc8
Kernel release 3.4.0

This was for the 3.2 kernel release, which
happened January 4, 2012.

2,833 developers
 373 companies

Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

This makes the Linux kernel the largest
contributed body of software out there that
we know of.

This is just the number of companies that we
know about, there are more that we do not,
and as the responses to our inquiries come
in, this number will go up.

10,500 lines added
 8,400 lines removed
 2,300 lines modified

2.6.20 to 2.6.24rc8Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

10,500 lines added
 8,400 lines removed
 2,300 lines modified

every day

2.6.20 to 2.6.24rc8Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

5.79 changes per hour

2.6.20 to 2.6.24rc8
Kernel releases 3.0.0 – 3.4.0
May 2011 – May 2012

This is 24 hours a day, 7 days a week, for a
full year.

We went this fast the year before this as well,
this is an amazing rate of change.

Interesting note, all of these changes are all
through the whole kernel.

For example, the core kernel is only 5% of the
code, and 5% of the change was to the core
kernel. Drivers are 55%, and 55% was done
to them, it's completely proportional all
across the whole kernel.

How we stay sane

2.6.20 to 2.6.24rc8

Time based releases
Incremental changes

This is 24 hours a day, 7 days a week, for a
full year.

We went this fast the year before this as well,
this is an amazing rate of change.

Interesting note, all of these changes are all
through the whole kernel.

For example, the core kernel is only 5% of the
code, and 5% of the change was to the core
kernel. Drivers are 55%, and 55% was done
to them, it's completely proportional all
across the whole kernel.

New release every
2¾ months

Kernel releases 2.6.20 – 3.4.0

84 days to be exact, very regular experience.

How a kernel is developed.
Linus releases a stable kernel
- 2 week merge window from subsystem

maintainers
- rc1 is released
- bugfixes only now
- 2 weeks later, rc2
- bugfixes and regressions
- 2 weeks later,rc3
And so on until all major bugfixes and

regressions are resolved and then the cycle
starts over again.

Greg takes the stable releases from Linus, and
does stable releases with them, applying
only fixes that are already in Linus's tree.

Requiring fixes to be in Linus's tree first
ensures that there is no divergence in the
development model.

After Linus releases a new stable release, the
old stable series is dropped.

With the exception of “longterm” stable
releases, those are special, the stick around
for much longer...

Like mentioned before, we have almost 2900
individual contributors. They all create a
patch, a single change to the Linux kernel.
This change could be something small, like a
spelling correction, or something larger, like
a whole new driver.

Every patch that is created only does one
thing, and it can not break the build,
complex changes to the kernel get broken
up into smaller pieces.

The developers send their patch to the
maintainer of the file(s) that they have
modified.

We have about 700 different
driver/file/subsystem maintainers

commit ecf85e481a716cfe07406439fdc7ba9526bbfaeb
Author: Robert Jarzmik <robert.jarzmik@free.fr>
AuthorDate: Tue Apr 21 20:33:10 2009 -0700
Commit: Greg Kroah-Hartman <gregkh@suse.de>
CommitDate: Thu Apr 23 14:15:31 2009 -0700

 USB: otg: Fix bug on remove path without transceiver

 In the case where a gadget driver is removed while no
 transceiver was found at probe time, a bug in
 otg_put_transceiver() will trigger.

 Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
 Acked-by: David Brownell <dbrownell@users.sourceforge.net>
 Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

--- a/drivers/usb/otg/otg.c
+++ b/drivers/usb/otg/otg.c
@@ -43,7 +43,8 @@ EXPORT_SYMBOL(otg_get_transceiver);
 void otg_put_transceiver(struct otg_transceiver *x)
 {
- put_device(x->dev);
+ if (x)
+ put_device(x->dev);
 }

This is an example of a patch.

It came from Robert, was acked by David, the maintainer
at the time of the usb on-the-go subsystem, and then
signed off by by me before it was commited to the
kernel tree.

The change did one thing, it checked the value of the
pointer before it was dereferenced, fixing a bug that
would have crashed the kernel if it had been hit.

This is also a “blame” trail, showing who changed each
line in the kernel, and who agreed with that change.

If a problem is found, these are the developers that you
can ask about it.

Because of this, every line in the Linux kernel can be
traced back to at least two developers who are
responsible for it.

This is better than any other body of code.

Developer's Certificate of Origin

(a) I created this change; or

(b) Based this on a previous work with a
 compatible license; or

(c) Provided to me by (a), (b), or (c) and not
 modified

(d) This contribution is public.

This is what “Signed-off-by:” means.
All contributions to the Linux kernel have to

agree to this, and every single patch has at
least one signed-off-by line, usually all have
at least two.

This is also a “blame” trail, showing who
changed each line in the kernel, and who
agreed with that change.

If a problem is found, this is the developers
that you can ask about it.

Because of this, every line in the Linux kernel
can be traced back to at least two
developers who are responsible for it.

This is better than any other body of code.

After reviewing the code, and adding their
own signed-off-by to the patch, the
file/driver maintainer sends the patch to the
subsystem maintainer responsible for that
portion of the kernel.

We have around 150 subsystem maintainers

Linux-next gets created every night from all of
the different subsystem trees and build
tested on a wide range of different
platforms.

We have about 150 different trees in the
linux-next release.

Andrew Morton picks up patches that cross
subsystems, or are missed by others, and
releases his -mm kernels every few weeks.
This includes the linux-next release at that
time.

Every 3 months, when the merge window
opens up, everything gets sent to Linus from
the subsystem maintainers and Andrew
Morton.

The merge window is 2 weeks long, and
thousands of patches get merged in that
short time.

All of the patches merged to Linus should
have been in the linux-next release, but that
isn't always the case for various reasons.

Linux-next can not just be sent to Linus as
there are things in there that sometimes are
not good enough to be merged just yet, it is
up to the individual subsystem maintainer to
decide what to merge.

Top developers by quantity
Mark Brown 1026
Axel Lin 723
K. Y. Srinivasan 626
Al Viro 607
Takashi Iwai 517
Mauro Chehab 507
Russell King 419
Johannes Berg 469
Ben Skeggs 405
Jonathan Cameron 396

Kernel releases 3.0.0 – 3.4.0

Mark – embedded sound
KY – hyperv
David – networking
Joe – janitorial
Alexl – janitorial
Al – vfs and filesystem
Russell – ARM maintainer
Takashi – sound maintainer
Jonathan – IIO
Ben – nouveau developer

Top Signed-off-by:
Greg Kroah-Hartman 4767
David S. Miller 3857
John Linville 3252
Mauro Carvalho Chehab 2412
Mark Brown 2230
Linus Torvalds 1984
Andrew Morton 1573
James Bottomley 1089
Takashi Iwai 953
Russell King 930

Kernel releases 3.0.0 – 3.4.0

Greg – driver core, usb, staging
David – networking
John – wireless networking
Mauro - v4l
Linus – everything
Mark - embedded
Andrew – everything
James – SCSI
Takashi – sound
Russell - ARM

Who is funding this work?
1. “Amateurs” 14.2%
2. Red Hat 10.1%
3. Intel 8.6%
4. Unknown Individuals 5.2%
5. Novell 4.0%
6. IBM 3.7%
7. Texas Instruments 3.6%
8. Broadcom 3.0%
9. Consultants 2.3%
10. Wolfson Micro 2.1%

Kernel releases 3.0.0 – 3.4.0

So you can view this as either 20% is done by
non-affiliated people, or 80% is done by
companies.

Now to be fair, if you show any skill in kernel
development you are instantly hired.

Why this all matters: If your company relies
on Linux, and it depends on the future of
Linux supporting your needs, then you
either trust these other companies are
developing Linux in ways that will benefit
you, or you need to get involved to make
sure Linux works properly for your
workloads and needs.

Who is funding this work?
11. Samsung 1.9%
12. Google 1.8%
13. Oracle 1.7%
14. Freescale 1.5%
15. MiTAC 1.4%
16. Qualcomm 1.4%
17. Microsoft 1.3%
18. Linaro 1.2%
19. Nokia 1.2%
20. AMD 1.1%

Kernel releases 3.0.0 – 3.4.0

Samsung 980 patches
Qualcomm 707 patches

Getting involved

2.6.20 to 2.6.24rc8

10,900 lines added
 5,500 lines removed
 2,200 lines modified

per day 2008 2009

Run the kernel.org release on your machine

Getting involved

2.6.20 to 2.6.24rc8

10,900 lines added
 5,500 lines removed
 2,200 lines modified

per day 2008 2009

This book tells you how to build and install a kernel
on your machine.

Free online

 2.6.20 to 2.6.24rc8

Documentation/HOWTO

Documentation/development-process

Getting involved

These documents in the kernel source
directory are the best place to start if you
want to understand how the development
process works, and how to get involved.

The HOWTO file has links to almost
everything else you ever wanted..

 2.6.20 to 2.6.24rc8

Getting involved

kernelnewbies.org

http://www.kernelnewbies.org

 2.6.20 to 2.6.24rc8

Getting involved
Google “write your first kernel patch”

This is a video of a talk I gave at FOSDEM,
going through the steps, showing exactly
how to create, build, and send a kernel
patch.

 2.6.20 to 2.6.24rc8

Getting involved
kernelnewbies.org/KernelJanitors/Todo

So you know how to create a patch, but what
should you do? The kernel janitors has a
great list of tasks to start with in cleaning
up the kernel and making easy patches to be
accepted.

 2.6.20 to 2.6.24rc8

Linux Driver Project

drivers/staging/*/TODO

Getting involved

The staging tree also needs a lot of help, here
are lists of things to do in the kernel for the
drivers to be able to move out of the staging
area.

Please always work off of the linux-next tree if
you want to do these tasks, as sometimes
they are already done by others by the time
you see them in Linus's tree.

github.com/gregkh/kernel-development

Obligatory Penguin Picture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

