
Browsing and Hacking the Linux Kernel with
KDevelop

Alexandre Courbot, NVIDIA

June 8, 2012



About This Guy...

Former academic in embedded
OSes

KDE user since 2003

Employed by NVIDIA as a Tegra
CE engineer

Need to browse, study and
understand kernel code quickly. . .

. . . and I know I am not alone



My Journey with Code Editors

Like most people, I spent some time
using the most popular code editors:

Emacs user for 5 years

Vim user for 4 years

Both are very nice and powerful. But
the ’80s called, and they want their UI
back.

Why are we still using tools that are between 15 and 30 years old
to browse and edit kernel code?



CTags/CScope

Supported by the kernel Makefile:
$ make tags

$ make cscope

Output usable by virtually every editor

Do a good job at filtering arch-relevant files. . .

. . . but unfortunately include all mach

. . . and not .config-aware

No incremental update of tags

Takes 40-seconds on this machine when kernel source is
cached

Sometimes not so smart



LXR, Linux Cross Reference

A HTML, browseable version of the Linux source code
(http://lxr.linux.no).

Web-based, not integrated into
your editor

Works with some reference source,
not yours

Parses everything and returns
references about everything

Parsing results sometimes totally
wrong: every DEFINE MUTEX use is
interpreted as a re-declaration!



CEDET (Emacs IDE)

Emacs-only Integrated Development Environment.

Code completion

Code browser

ASCII UML diagrams

. . .



CEDET (Emacs IDE)

A “Gentle” Introduction to CEDET

(defun my-cedet-hook ()

(local-set-key [(control return)] ’semantic-ia-complete-symbol)

(local-set-key "\C-c?" ’semantic-ia-complete-symbol-menu)

(local-set-key "\C-c>" ’semantic-complete-analyze-inline)

(local-set-key "\C-cp" ’semantic-analyze-proto-impl-toggle))

(add-hook ’c-mode-common-hook ’my-cedet-hook)

;; automatic name completion

(defun my-c-mode-cedet-hook ()

(local-set-key "." ’semantic-complete-self-insert)

(local-set-key ">" ’semantic-complete-self-insert))

(add-hook ’c-mode-common-hook ’my-c-mode-cedet-hook)

Now open a file, and admire your screen frozen for one minute.



What To Expect From a Modern IDE?

Things have changed since last century. We have multi-core
machines, filesystem notifiers, modern UIs, SSD disks.

Take advantage of modern hardware and kernel features:
inotify, multi-core, . . .

Background parsing

Incremental updates of modified files

Easy to setup, minimal configuration

Integrated into a decent editor

Modern UI yet allow both keyboard and mouse control

Eclipse does that well for Java - why don’t we have the same for C
and kernel?



About KDE

A modern, slick set of libraries, core services, and applications
based on Qt.

Highly-configurable

Reusable components (KParts)

DBUS-controllable

Very dynamic and listening community

Kate text editor

Syntax highlighting for 200+ files types
Code folding
Split screen
Very configurable, extensible through plugins and scripts
VI mode!



About KDevelop

Project started in 1998, went through several rewrites.
KDevelop 4:

In development since 2005, first stable release in 2010

Leverages most KDE technologies

Extremely modular and extensible

Very powerful code analysis/browsing capabilities

Probably the most overlooked Linux/C++ Linux IDE

What happens if we open the kernel source with it?



KDevelop and the Kernel

Most features working out of the box, but:

KDevelop’s parser is C++ only

Code parsing extremely long, many unnecessary files parsed

Include paths incorrect

No kernel configuration awareness



Tuning KDevelop for the Kernel

Two-fronts work:

1 Make KDevelop more kernel-friendly

Make the parser capable of handling pure C

2 kdev-kernel plugin
Kernel project manager:

Parse configuration and Makefile to only consider source files
relevant to the current configuration
Declare configuration macros to guide the C parser
Setup the correct include paths

Kernel builder

Integrate kernel configuration GUI
Handle out-of-source building and cross-compiling
automatically

Guided Tour

Let’s see how this works!



Obvious Features

Sessions

Bookmarks

Navigation history

Customizable keyboard shortcuts

Code snippets

External scripts

Customizable indentation rules

Working files sets



Kernel Project Configuration

Kernel project configuration dialog: just choose your architecture
and base configuration, and there you go!

Code parsing then becomes configuration-aware



Inline Symbols Information

Links to symbols definitions, inline documentation

Macro expansion and quick peeking



Project-wide Uses of Symbols

Find exactly where a given symbol is used



Quick Open

Quickly find any file, function of struct across the project



Code Editing

Smart code completion

Refactoring



Integrated Configuration and Compilation

Integrated make invoked with the right parameters and linked
output



Git Integration

git blame support



Future Work

Both KDevelop and kdev-kernel are works in progress.

Complete C support / Fix parser errors

Improve background parsing speed

Function pointers analysis

Debugger integration

Support for out-of-tree kernel modules

Static analysis tools (call graphs, . . . )

. . .

KDevelop is a fun project to hack on

Usable on a daily basis and first-of-his-class on a lot of
features

Yet potential to implement many cool things!



Thank you!

KDevelop Official Website

http://www.kdevelop.org

Kernel Tailored Branch and kdev-kernel Plugin

https://github.com/Gnurou/kdevelop

https://github.com/Gnurou/kdev-kernel

Feel free to contact me on Github if you have trouble setting up!
Bug reports, features requests, and patches are very welcome.


