
Lead Software Engineer

Glauber Costa

August 30th, 2012 – Linuxcon

The failure of Operating Systems,
and how we can fix it.

2 2

Opening Notes

• I'll be doing Hypervisors vs Containers here. But:

3 3

Opening Notes

• I absolutely don't believe Hypervisors are useless.
• I will also not say Containers are better than
Hypervisors (or vice-versa). That is dependent on your
use-case, and the comparison between them is not
the point of this talk.

• I am mostly talking about “traditional” Linux. Some of
what I am presenting is already upstream, so you may
get a sense of “Oh, but Linux already does that”.

4 4

A Brief History of Operating Systems

5 5

Introduction

• History books tell us that back in the day, a computer
ran a single program.

• The white bearded guys in the audience may be able
to confirm that.

• This is way too inefficient.

6 6

Smarter resource usage

• Whatever equivalent of Ingo Molnar existed at the
time, came up with a scheduler.

• I/O is no longer wasted time.

7 7

Smarter resource usage

• Programs want to start at a fixed address,
• and want to point to its code and data at fixed
locations.

• Meet the VM.

8 8

It has a number of limitations, though.

• Fire firefox (or chrome chromium)
• Start something else and use lots of memory.
• Watch the system page out.
• What do you think happens to your browser?

• Give an unprivileged user wanting CPU power a hand,
• He'll surely want an arm (even if running on x86).
• nice is not very nice for guaranteeing cpu time.
• Basic abstraction is a process, but services have plenty of

them.

9 9

Memory eviction order

Process 1 Process 2 Process 2 Process 2

LRU
• P1 will be penalized by P2's high memory usage.

10 10

No process schedule grouping

Process 2

50 % 50 %

Process 1

11 11

No process schedule grouping

Service 2

75 %
25 %

Service 1 Service 1

Service 1

• Dynamic adjusting those priorities is very hard.
• May not be fine grained enough.

12 12

Example exploit

$ while true; do mkdir x; cd x; done

• Each 'x' will generate directory entry (dentry)
• Those dentries are pinned in memory.
• This is non-reclaimable, kernel memory!
• Will consume all memory before any disk quota can
kick in.

• Unrelated processes will fail to be serviced.

13 13

Classical resource abuse

$:() { :;:& };:

• Fork bomb.
• Should be your problem, not mine.

14 14

The hypervisor solution and what it allows

15 15

Enter KVM (and others)

• Started by kivity.avi,
• Designed to make the Linux Kernel itself the HV – in
KVM case.

• Each VM is a (group of) process(es).
• Provides a N:1 CPU mapping; logical grouping.
• It also provides an fair view on memory – If you don't

overcommit VMs, you will never evict them.

16 16

Use cases

• I want to run web and mail servers, and databases.
• I don't want them to interfere with each other.

• Too much memory usage by one hurts another,
• forks can increase relative aggregate CPU throughput.

• I want to gather accurate service statistics.
• Preferably with standard tools like “top”.

17 17

Use cases

• I want each of them to have its own IP address.
• And the same standard ports – 22, 25, 80, etc.

• This may also mean running an isolated userspace,
• With root in all of them,
• Maybe with their own init process.
• Compatible and certified stack (for old software).

18 18

Use cases

• I want to run different versions of Linux
• This can also be part of a certified stack.

• I want to run a heterogeneous datacenter
• Other OSes as well.

19 19

Containers

20 20

Use cases

Usage Should the OS do it?

Make sure processes high resource
usage doesn't interfere with others. YesYes

Logically map process to a single
process. YesYes

Provide logically grouped
introspection. YesYes

Provide processes with flexible
view of resources, such as ports. YesYes

Run different kernels.
NoNo

21 21

New additions to the Linux Kernel

• Network namespaces.
• Provides a unique IP per group of processes.
• Provides raw device view per-process as well.
• Easy packet filtering (per-device).
• 30 processes connecting to port 80? No problem.

22 22

New additions to the Linux Kernel

• Mount namespaces.
• Linux can chroot, but new mounts are globally visible.
• I may want a private mount.

• User namespaces.
• Allows more than one “root” user in the system.
• Of course, other users as well.

23 23

New additions to the Linux Kernel

• cgroup : logical grouping of processes.
• “WebServer1”, “MailServer3”, etc.

• Can attach controllers.
• I will briefly introduce two of them.

24 24

New additions to the Linux Kernel

• The cpu controller.
• The scheduler will first schedule among groups,
• then it will schedule inside each group.
• Inside each group, we can have another group.
• Can limit the maximum CPU time used.

25 25

New additions to the Linux Kernel

• The memory controller.
• Can limit the maximum amount of memory.
• Soft and Hard Limits.
• Hard Limits will page even if there is memory available in

the system.
• Controlling resources used by the kernel is work in

progress. Essential to prevent some exploits.

26 26

Other features

• Live Migration
• Came to be a killer feature for hypervisors.
• Can also be done by containers by checkpoint/restore

• Specialized loop device.
• Separate journal per-container, without heavy fs changes.
• inode number stability.

27 27

Containers, today.

• It is possible to run production containers today.
• Upstream Linux lacks the whole infrastructure.
• The OpenVZ fork provides a stable, secure, and mature

Open Source container offer.
• You might have heard about LXC.

• Userspace tool, only run what Linux provides – future only.

28 28

Work Status

• A lot of it is already in, and works all right
• cgroups basic infrastructure.
• CPU controller.
• Network Namespaces.

• Some of it in, needs improvements and the test of time
• User namespaces, fully unprivileged still not possible.
• Mount namespaces, joining still not possible.
• PID namespaces, joining still not possible.
• Block I/O controller.

29 29

Work Status

• To be merged
• Slab object accounting and fork bomb prevention.
• Group-aware kernel memory shrinking.
• Group-aware filesystem quotas.
• Specialized loop device (separate journal + inode# stability)
• Live Migration (Checkpoint/Restore)

30 30

Tooling

• LXC.
• OpenVZ tools are being patched as we speak to run
with functionality already present in the Upstream
Kernel.

• Love it or hate it, SystemD uses cgroups as one of its
building blocks.

• The “unshare” command can run an arbitrary process
in a separate namespace.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

