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Opening Notes

• I'll be doing Hypervisors vs Containers here. But:
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Opening Notes

• I absolutely don't believe Hypervisors are useless.
• I will also not say Containers are better than 
Hypervisors (or vice-versa). That is dependent on your 
use-case, and the comparison between them is not 
the point of this talk.

• I am mostly talking about “traditional” Linux. Some of 
what I am presenting is already upstream, so you may 
get a sense of “Oh, but Linux already does that”.
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A Brief History of Operating Systems
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Introduction

• History books tell us that back in the day, a computer 
ran a single program.

• The white bearded guys in the audience may be able 
to confirm that.

• This is way too inefficient.
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Smarter resource usage

• Whatever equivalent of Ingo Molnar existed at the 
time, came up with a scheduler.

• I/O is no longer wasted time.
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Smarter resource usage

• Programs want to start at a fixed address,
• and want to point to its code and data at fixed 
locations.

• Meet the VM.
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It has a number of limitations, though.

• Fire firefox (or chrome chromium)
• Start something else and use lots of memory.
• Watch the system page out.
• What do you think happens to your browser?

• Give an unprivileged user wanting CPU power a hand,
• He'll surely want an arm (even if running on x86).
• nice is not very nice for guaranteeing cpu time. 
• Basic abstraction is a process, but services have plenty of 

them.
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Memory eviction order

Process 1 Process 2 Process 2 Process 2

LRU
• P1 will be penalized by P2's high memory usage.
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No process schedule grouping

Process 2

50 % 50 %

Process 1
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No process schedule grouping

Service 2

75 %
25 %

Service 1 Service 1

Service 1

• Dynamic adjusting those priorities is very hard.
• May not be fine grained enough.
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Example exploit

$ while true; do mkdir x; cd x; done

• Each 'x' will generate directory entry (dentry)
• Those dentries are pinned in memory.
• This is non-reclaimable, kernel memory!
• Will consume all memory before any disk quota can 
kick in.

• Unrelated processes will fail to be serviced.
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Classical resource abuse

$ :() { :;:& };:

• Fork bomb.
• Should be your problem, not mine. 
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The hypervisor solution and what it allows
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Enter KVM (and others)

• Started by kivity.avi,
• Designed to make the Linux Kernel itself the HV – in 
KVM case.

• Each VM is a (group of) process(es).
• Provides a N:1 CPU mapping; logical grouping.
• It also provides an fair view on memory – If you don't 

overcommit VMs, you will never evict them.
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Use cases

• I want to run web and mail servers, and databases.
• I don't want  them to interfere with each other.

• Too much memory usage by one hurts another,
• forks can increase relative aggregate CPU throughput.

• I want to gather accurate service statistics.
• Preferably with standard tools like “top”.
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Use cases

• I want each of them to have its own IP address.
• And the same standard ports – 22, 25, 80, etc.

• This may also mean running an isolated userspace,
• With root in all of them,
• Maybe with their own init process.
• Compatible and certified stack (for old software).
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Use cases

• I want to run different versions of Linux
• This can also be part of a certified stack.

• I want to run a heterogeneous datacenter
• Other OSes as well.
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Containers
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Use cases

Usage Should the OS do it?

Make sure processes high resource 
usage doesn't interfere with others. YesYes

Logically map process to a single 
process. YesYes

Provide logically grouped 
introspection. YesYes

Provide processes with flexible 
view of resources, such as ports. YesYes

Run different kernels.
NoNo
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New additions to the Linux Kernel

• Network namespaces.
• Provides a unique IP per group of processes.
• Provides raw device view per-process as well.
• Easy packet filtering (per-device).
• 30 processes connecting to port 80? No problem. 
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New additions to the Linux Kernel

• Mount namespaces.
• Linux can chroot, but new mounts are globally visible.
• I may want a private mount.

• User namespaces.
• Allows more than one “root” user in the system.
• Of course, other users as well.
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New additions to the Linux Kernel

• cgroup : logical grouping of processes.
• “WebServer1”, “MailServer3”, etc.

• Can attach controllers.
• I will briefly introduce two of them.
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New additions to the Linux Kernel

• The cpu controller.
• The scheduler will first schedule among groups,
• then it will schedule inside each group.
• Inside each group, we can have another group.
• Can limit the maximum CPU time used.
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New additions to the Linux Kernel

• The memory controller.
• Can limit the maximum amount of memory.
• Soft and Hard Limits. 
• Hard Limits will page even if there is memory available in 

the system. 
• Controlling resources used by the kernel is work in 

progress. Essential to prevent some exploits.
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Other features

• Live Migration
• Came to be a killer feature for hypervisors.
• Can also be done by containers by checkpoint/restore

• Specialized loop device.
• Separate journal per-container, without heavy fs changes.
• inode number stability.
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Containers, today.

• It is possible to run production containers today.
• Upstream Linux lacks the whole infrastructure.
• The OpenVZ fork provides a stable, secure, and mature 

Open Source container offer.
• You might have heard about LXC.

• Userspace tool, only run what Linux provides – future only.
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Work Status

• A lot of it is already in, and works all right
• cgroups basic infrastructure.
• CPU controller.
• Network Namespaces.

• Some of it in, needs improvements and the test of time
• User namespaces, fully unprivileged still not possible.
• Mount namespaces, joining still not possible.
• PID namespaces, joining still not possible.
• Block I/O controller.
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Work Status

• To be merged
• Slab object accounting and fork bomb prevention.
• Group-aware kernel memory shrinking.
• Group-aware filesystem quotas.
• Specialized loop device (separate journal + inode# stability)
• Live Migration (Checkpoint/Restore)
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Tooling

• LXC.
• OpenVZ tools are being patched as we speak to run 
with functionality already present in the Upstream 
Kernel.

• Love it or hate it, SystemD uses cgroups as one of its 
building blocks.

• The “unshare” command can run an arbitrary process 
in a separate namespace.
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