
Torvald Riegel1

New Programming Abstractions

 for Concurrency in GCC 4.7

Torvald Riegel
Red Hat
12/04/05

Torvald Riegel2

Concurrency and atomicity

● Complemented by C++11 threading support
● Talk’s focus is on C++ but C11 has (very) similar support

C++11 atomic types Transactional Memory

Provide atomicity for concurrent accesses by different threads

Both based on C++11 memory model

Single memory location Any number of memory locations

Low-level abstraction,
exposes HW primitives

High-level abstraction,
mixed SW/HW runtime support

Torvald Riegel3

Atomic types and accesses

● Making a type T atomic: atomic<T>
● Load, store:

● atomic<int> a; a = a + 1; a.store(a.load() + 1);

● CAS and other atomic read-modify-write:
● int exp = 0; a.compare_exchange_strong(exp, 1);
previous = a.fetch_add(23);

● Sequential consistency is default
● All s-c ops in total order that is consistent with per-thread

program orders
● Other weaker memory orders can be specified

● locked_flag.store(false, memory_order_release);

● Important orders: acquire, acq_rel, release, relaxed, seq_cst

Torvald Riegel4

Why a memory model?

● Defines multi-threaded executions (undefined pre C++11)
● Normal, nonatomic memory accesses
● Ordering of all operations enforced by atomic/synchronizing

memory accesses

● Common ground for programmers and compilers
● Formalizations of the model exist [1]
● Base for testing tools, compiler testing, verification, ...

● Unified abstraction for HW memory models
● Portable concurrent code (across HW and compilers)
● Simpler than several HW memory models

Torvald Riegel5

Happens-before (HB)

● Order of operations in a particular execution of a program
● Derived from / related to other relations:

● Sequenced-before (SB): single-thread program order
● Reads-from: which store op’s value a load op reads
● Synchronizes with (SW)

● Example: acquire-load reads from release-store (both atomic)
● Total orders for seq_cst operations, lock acquisition/release
● Simplified: HB = transitive closure of SB U SW

● Compiler generates code that ensures some valid HB:
● Must be consistent with all other relations and rules
● Must be acyclic
● Generated code ensures HB on top of HW memory model

Torvald Riegel6

Data-race freedom (DRF)

● Data race: Nonatomic accesses, same location, at least
one a store, not ordered by HB

● Any valid execution has a data race?
=> Undefined behavior

● Programs must be DRF
● Allows compiler to optimize

● Compiler preserves DRF
● Access granularity
● Speculative stores, reordering, hoisting, ...

Torvald Riegel7

Examples

● Simple statistics counter:
counter.fetch_add(1, memory_order_relaxed);
counter.store(counter.load(mo_relaxed) + 1, mo_relaxed);

● Publication:
init(data);
data_public.store(true, mo_release);

 if (data_public.load(mo_acquire))
 use(data);

● Beware of data races:
temp = data;
if (data_public.load(mo_acquire))
 use(temp);

Races with init
Program behavior is undefined

+ rel/acq = sync-with

SB

SB

init
happens-before
use

Torvald Riegel8

Transactional Memory (TM): What is it?

● Always faster than custom algorithm X? ...?
● A HW feature?
● Concurrent algorithm X?
● Optimistic synchronization in SW?
● Much too slow anyway? ...?

● TM is a programming abstraction
● Declare that several actions are atomic
● But don’t have to implement how this is achieved

Torvald Riegel9

Transactional Memory (TM): What is it?

● Always faster than custom algorithm X? ...?
● A HW feature?
● Concurrent algorithm X?
● Optimistic synchronization in SW?
● Much too slow anyway? ...?

● TM is a programming abstraction
● Declare that several actions are atomic
● But don’t have to implement how this is achieved

Implementation
possibilities

Torvald Riegel10

Transactional language constructs for C/C++

● Declare that compound statements, expressions, or
functions must execute atomically

● __transaction_atomic { if (x < 10) y++; }

● No data annotations or special data types required

● Language integration increases ease of use
● Let the compiler help!
● Allows reuse of existing (sequential) code

● Draft specification for C++ [2]
● HP, IBM, Intel, Oracle, Red Hat
● Spec group proposed standardization as C++ tech report [3]
● C will be similar

Torvald Riegel11

TM supports a modular programming model

● Programmers don’t need to manage association between
shared data and synchronization metadata (e.g., locks)

● TM takes care of that
● Functions containing only txnal sync compose w/o

deadlock, nesting order does not matter
● User studies suggest that txns lead to simpler programs

with fewer errors compared to locking [4,5]
● Example:
void move(list& l1, list& l2, element e)
{ if (l1.remove(e)) l2.insert(e); }

● TM: __transaction_atomic { move(A, B, 23); }
● Locks: ?

Torvald Riegel12

Atomic vs. relaxed transactions

● Atomic / relaxed checked at compile time
● Compiler analyzes code
● Additional function attribs to deal with multiple Cus

● Work-in-progress: tm_waiver
● Programmer-controlled synchronization for parts of a txn

Atomic Relaxed

Atomic wrt.: All other code Only other transactions

Restrictions on
txnal code:

No other synchronization
(conservative, WIP)

None

Keyword: __transaction_atomic __transaction_relaxed

Torvald Riegel13

How to synchronize with transactions?

● TM extends the C++11 memory model
● All transactions totally ordered
● Order contributes to Happens-Before (HB)
● TM ensures some valid order that is consistent with HB
● Does not imply sequential execution!

● Data-race freedom still required
init(data); __transaction_atomic { data_public = true; }

Correct: __transaction_atomic {
 if (data_public) use(data); }
Incorrect: __transaction_atomic { temp = data; // Data race
 if (data_public) use(temp); }

● No changes to memory model of nontxnal code
● If you don’t use it, you don’t pay for it

Torvald Riegel14

Implementation options

● Most of the TM implementation is in a library (GCC’s libitm)
● Software only (STM):

● Global lock, two-phase locking, nonblocking, locked writes
and efficiently validated reads (array of locks), ...

● Hardware TM (HTM):
● x86: Intel’s TSX / RTM, AMD’s Advanced Synch. Facility
● Hybrid HW/SW TM (HyTM)

● With compiler support (e.g., points-to analysis):
● Automatic partitioning (divide-and-conquer), finding locking

schemes at compile time, ...
● Language-level txns are a portable interface for HTM/STM

● Compiler creates HTM + STM fallback code from one source
● HTM support can be delivered by a library update

Torvald Riegel15

Current GCC 4.7 status and outlook

Atomics, memory model TM

Status: ● C++11 atomics implemented
● Works fine for libitm

● Supports most of the
specification

● Runs standard TM
benchmarks correctly

Outlook: ● C11 atomics
● Fix memory access granularity

issues (e.g., bitfields)
● Audit GCC passes
● More testing

● Optimize libitm
(need your workloads and use
cases!)

● Generate better txnal code
● HTM support

Torvald Riegel16

References

● [1] http://www.cl.cam.ac.uk/~pes20/cpp
● [2] https://sites.google.com/site/tmforcplusplus/
● [3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf

● [4] Pankratius & Adl-Tabatabai, “A study of transactional
memory vs. locks in practice”, in SPAA 2011

● [5] Rossbach et al., “Is Transactional Programming Actually
 Easier?”, in PPoPP 2010

http://www.cl.cam.ac.uk/~pes20/cpp
https://sites.google.com/site/tmforcplusplus/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

