
1 

Leveraging Android's 
Linux Heritage

Android Builders Summit 2012

Karim Yaghmour
@karimyaghmour



2 

These slides are made available to you under a Creative Commons 
Share-Alike 3.0 license. The full terms of this license are here: 
https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc., PLEASE READ:

● This slide must remain as-is in this specific location (slide #2), 
everything else you are free to change; including the logo :-)

● Use of figures in other documents must feature the below 
“Originals at” URL immediately under that figure and the below 
copyright notice where appropriate.

● You are free to fill in the “Delivered and/or customized by” space 
on the right as you see fit.

● You are FORBIDEN from using the default “About” slide as-is or 
any of its contents.

(C) Copyright 2010-2012, Opersys inc.

These slides created by: Karim Yaghmour

Originals at: www.opersys.com/community/docs

 Delivered and/or customized by



3 

About

● Author of:

● Introduced Linux Trace Toolkit in 1999
● Originated Adeos and relayfs (kernel/relay.c)
● Training, Custom Dev, Consulting, ...



4 

“Android took GNU out the back door,
shot him in the head, and

ran away with the penguin”

-- Surely from Tarantino's next flick



5 

Agenda

● Goal
● Rationale
● Stack Comparison
● Roadblocks
● Where do I start?
● Coexistence Approaches
● Unresolved / Uncharted
● Demo



6 

1. Goal

● Opening as many cans of worms as possible
● Can “Linux” and Android Coexist and Interact?



7 

2. Rationale

● A ton of mature user-space packages available
● Linux has been around for 20 years
● Linux's user-space has been developed in the open

● A ton of “Linux”-centric stacks have been developed through the 
years
● “Porting” to Android not always possible/desirable/realistic

● Android doesn't provide everything
● Touch-based, consumer-oriented
● Linux is very strong on backend/server side

● Android exhibits symptoms of “my way or the highway” design



8 

3. Stack Comparison

● Android Concepts Recap
● Overall Architecture EL
● Overall Architecture Android



9 

3.1. Android Concepts Recap

● Components
● Intents
● Component lifecycle
● Manifest file
● Processes and threads
● Remote procedure calls



10 

3.1.1. Components

● 1 App = N Components

● Apps can use components of other applications

● App processes are automagically started whenever any part 
is needed

● Ergo: N entry points, !1, and !main()

● Components:
● Activities
● Services
● Broadcast Receivers
● Content Providers



11 

3.1.2. Intents

● Intent = asynchronous message w/ or w/o 
designated target

● Like a polymorphic Unix signal, but w/o 
required target

● Intents “payload” held in Intent Object
● Intent Filters specified in Manifest file



12 

3.1.3. Component lifecycle

● System automagically starts/stops/kills 
processes:
● Entire system behaviour predicated on low memory

● System triggers Lifecycle callbacks when 
relevant

● Ergo: Must manage Component Lifecycle
● Some Components are more complex to 

manage than others



13 



14 

3.1.4. Manifest file

● Informs system about app’s components
● XML format
● Always called AndroidManifest.xml
● Activity = <activity> ... static
● Service = <service> ... static
● Broadcast Receiver:

● Static = <receiver>
● Dynamic = Context.registerReceiver()

● Content Provider = <provider> ... static



15 

3.1.5. Processes and threads

● Processes
● Default: all callbacks to any app Component are issued to the main process thread

● <activity>—<service>—<recipient>—<provider> have process attribute to override 
default

● Do NOT perform blocking/long operations in main process thread:

– Spawn threads instead

● Process termination/restart is at system’s discretion

● Therefore:

– Must manage Component Lifecycle

● Threads:
● Create using the regular Java Thread Object

● Android API provides thread helper classes:

– Looper: for running a message loop with a thread

– Handler: for processing messages

– HandlerThread: for setting up a thread with a message loop



16 

3.1.6. Remote procedure calls

● Android RPCs = Binder mechanism
● No Sys V IPC due to in-kernel resource leakage
● Binder is a low-level functionality, not used as-is
● Instead: must define interface using Interface 

Definition Language (IDL)
● IDL fed to aidl Tool to generate Java interface 

definitions



17 

3.2. Overall Architecture - EL



18 

3.3. Overall Architecture – Android



19 

4. Roadblocks

● Filesystem
● Android is non-FHS-compliant

● C library
● Bionic vs. glibc

● Interconnect fabric
● Intents vs. DBUS

● IPC
● Binder vs. Sockets and other std Unix IPC

● Display management
● SurfaceFlinger vs. X

● I/O
● Framebuffer, keyboard, mouse, disk, ...



20 

5. Where do I start?

● Android-side:
● AOSP

● “Linux”-side:
● Traditional distro

– Ubuntu, Fedora, Debian, Gentoo, ...
● Embedded distro

– Yocto, Buildroot, LTIB, ...
● Build Your Own
● Cherry-picking



21 

6. Coexistence Approaches

● Single filesystem
● Build system integration
● Build-time aggregation
● Image repackaging

● chroot jails
● Have a look at AlwaysInnovating Gregoire Gentil's ELC presentation
● Patching to lots of pieces of the OS
● Use of one FB for each OS or chvt

● Virtualization / Paravirtualization
● QEMU
● XEN?



22 

7. Been there done that

● BusyBox in CyanogenMod
● Gstreamer vs. Stagefright
● Don't know how they do it:

● Alien Dalvik: Android on Meego

● ...



23 

8. Unresolved / Uncharted

● Binder from glibc

● Intent <-> DBUS bridge

● Running Android apps in X

● Running X apps in Android

“The easier thing to do, which would work on just about all Android phones 
without having to modify the system software at all, would be to port an X 
server to the NDK, using a SurfaceFlinger Surface as its root window.

You could do a generic "X11WrapperApp" that has you XSurfaceFlinger 
bundled and launches whatever X based app you want, and have it all play 
nice together.

A bit more work would be to just do an implementation of xlib that sits on top of 
a native Android window (opengl ES 2 if you like) without any server in the 
middle, and again bundle this and the X based app of your choice and you 
have something that is a first class app on the phone without any need for 
modifying the OS.”



24 

9. Demos

● All:
● AOSP
● BYO glibc-based rootfs

● Demo 1: BusyBox
● Demo 2: Client-Server app talking through socket

● glibc client
● bionic server

● Demo 3: Surprise!



25 

9.1. Demo 1 - BusyBox

● Configure, build and “install” BusyBox
● Get it copied into final RAM disk image
● Modify AOSP to:

● Make sure /lib/* is executable
● Path start with “/bin”
● adb shell is BusyBox, not Toolbox



26 

9.2. Demo 2 - Architecture



27 



28 

9.3. Demo 3 – LTT, the revenge

● Patch kernel
● Cross-build ltt-ctl
● Modify AOSP to log to LTT



29 

Thank you ...

karim.yaghmour@opersys.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

