
Ice Cream Sandwich

Rapid Bring Up

Russell Webb – Software Engineer

russell.webb@intel.com

Adrian Negreanu – Software Engineer

mailto:russell.webb@intel.com

2 SSG System Software Division

Introduction

• Who am I?
– Medfield Tablet Team Lead with Intel’s Open Source Technology Center.

– Started working on Android* with 0.9 release for T-Mobile Garminfone.

• A bit about my team and Intel’s Android* Board Support Package (BSP)
– We have a globally distributed engineering team developing the BSP.

– We have a distribution team that handles Infrastructure and SCM, also geographically
distributed.

– We are responsible for delivering the Android reference OS for the Intel Medfield
Tablet reference design.

– We use a provisioning OS called droidboot that implements the fastboot protocol for
the target.

• Our goal for ICS
– Challenged to enable ICS on Medfield tablet in days, not weeks.

– Get majority of developers off of HC and working on new OS as quickly as possible.

– Get to market quickly on ICS.

3 SSG System Software Division

Overview

• Phases of the bring up: how we set milestones
– Prework, Code landing, first build, first command line boot, first UI boot, peripheral systems

bring up

• Key places to look when first bringing up Android

• Cleaning up

• Lessons learned

• Questions

4 SSG System Software Division

Phases of work

– Six distinct phases:

• Each phase has clear entry and exit criteria

Prework

• Distro preparation

• Analysis of HC patches

• 3.0 kernel on HC

• Logistical prep – room,
computers, etc

ICS delivery

• Distro implements prework plan

• Build/compilation is first priority

• Gap analysis begins

• Nightly build

Kernel bringup

• Goal of booting to kernel cmd
line

• Adb, droidboot, image flashing

Graphics bringup

• Boot to UI

• Can initially boot using SW
rendering

• Goal of booting with HW
rendering enabled

Core OS bring up

• Major subsystems up,
touchscreen, dalvik,
renderscript

• Apps may have issues, but
home screen/system_server
won’t crash immediately

Core app bringup

• Core apps working

• Wifi, sensors

• Nightly build and FAST smoke-
testing

Honeycomb

5 SSG System Software Division

Prework Phase

• Because ICS was on a 3.0 kernel, we knew it would be key to have

a working 3.0 kernel prior to ICS source availability.

• Honeycomb OS was used as the preparation vehicle. First goal

before ICS release was to have honeycomb running well on a 3.0

kernel.

• All of our patches for AOSP projects were analyzed and put into

groups: don’t port, maybe port, port.

– Emphasis was to minimize the number of patches we carry forward. We did NOT

want to simply pull everything forward without knowing for sure it was necessary.

6 SSG System Software Division

Prework Phase - Infrastructure

• Infrastructure set up with ics branch initially pointed to honeycomb.

Allowed us later to easily repoint once ics was released and

mirrored in.

– Created ics branch in manifest project

– Created ics/master branches for all HC projects

• We developed scripts to easily add new mirrored branches – for

every mirrored project that has honeycomb-mr2-release, create new

mirror for ics-mr0. This allowed us to rapidly add new mirrors when

source was made available.

7 SSG System Software Division

ICS released!

• Infrastructure pre-work plan put into effect – mirrors were up within

one hour.

• First place to look before the mirroring was done – manifest project.

Check for new/removed projects and modify our mirrors accordingly.

• Code distribution – save .repo/ directory to a usb stick and distribute

that way. Having 10 people run multithreaded repo syncs will take a

while.

– Copy .repo/, then “repo sync --local”

• We created a temp branch at this point and used that for the early

bring up. Having this branch plus lots of hacks and workarounds

made it easier to clean up later.

8 SSG System Software Division

Early tasks – fixing the build

• First order of business once code is distributed is to successfully

build. How to parallelize this task?

• We used “make -k” and a whiteboard to collect the build errors. As

one was encountered, someone was assigned to fix it and the rest

continued on. Communication was critical in this phase.

• The engineer assigned to resolve the build issue had two options:

work around the error or fix it properly.

• When a workaround was uploaded, the patch was tracked as a bug

so that a proper fix would be uploaded later.

9 SSG System Software Division

Fixing the build – cont’d

• Some components were simply excluded (HeightMapProfiler, for

instance – non-essential sample app). Others were quickly fixed and

pushed to Gerrit.

• This is where we also ported any necessary build project patches –

mostly related to our in-tree kernel build.

• We still used Gerrit for patches. Code review is valuable even when

going very fast. Catching problems early saves debugging time later.

• Build was successful within a few hours of source code availability.

10 SSG System Software Division

Getting through the boot

• Our prework paid off and kernel was booting with minimal changes

to init scripts.

• Android init – parses init.<bootmedia>.rc, init.rc, and

init.<boardname>.rc

– Action triggers: early-init, init, early-fs, fs, post-fs, post-fs-data, early-boot, boot,

property changes,

– Services: classes of services (core, main), onrestart, oneshot

– This is a key place to disable zygote to test the kernel independent of the Android

userspace. Add “disabled” to service zygote.

11 SSG System Software Division

Runtime errors

• SystemServer failed to start, due to unmet service dependencies. In

many cases, the problematic Android services can be excluded by

not starting them in the first place (harder to do with core services

like ActivityManager).

• Located in

– frameworks/base/services/java/com/android/server/SystemServer.java

• All the core Android services are started in the system server. Non-

critical ones that were failing (in our case, Nfc) can be temporarily

commented out so that system_server will start.

12 SSG System Software Division

Runtime errors

• In Android 4.0, Tinyalsa was introduced as the audio HAL (we had

previously carried forward alsa_sound that was deprecated in earlier

versions of Honeycomb).

• A work-around was used, using the generic Android HAL and a

dummy kernel sound card.

– BOARD_USES_GENERIC_AUDIO:=true # BoardConfig.mk

– CONFIG_SND_DUMMY=y

• Major changes were added in the camera HAL, so we also used the

stub:

– USE_CAMERA_STUB:=true # BoardConfig.mk

13 SSG System Software Division

Booting to UI

• The Graphics were not usable at first, so a temporary solution was

needed to unblock the UI.

• In this case, PixelFlinger was used. This was forced by modifying

egl.cfg (0 0 android) and removing all PowerVR libraries from

$(PRODUCT_PACKAGES).

• We also modified gralloc framebuffer to hardcode screen

dimensions, because kernel mode-setting led Android to assume

double buffering was available.

• Having a functional, albeit slow, SW-rendering UI brought to our

attention that the touchscreen protocol changed and unblocked

other UI dependent tasks.

14 SSG System Software Division

Progress!!

15 SSG System Software Division

Getting through the boot, continued

• Hardware vs. Software UI Rendering.
– Since Android 1.0, the window compositing was HW accelerated, but not the

actual content drawing. As the resolution used increased, the software rendering
became a bottleneck. So, starting with Android 3.0, Hardware Accelerated UI
rendering was added, but apps would “opt-in” to HW acceleration. It was not
enabled by default.

– With ICS, Hardware UI Rendering is enabled by default.

– This can be changed from your BoardConfig.mk:
 USE_OPENGL_RENDERER := true | false

• The HW UI Rendering needs special support from EGL, so this was
a key first step for us in booting to the UI. We were able to boot
using the SW rendering path first, while our graphics team sorted
out the HW path.

• HW rendering was functional 3 hours after the SW path was
functional. During this critical period, we were also able to fix the
touchscreen driver and resolve several other issues only possible
with a functioning UI.

16 SSG System Software Division

Success!!

17 SSG System Software Division

Key places to look

• Touchscreen
– ICS expected protocol B, whereas HC was using protocol A

– Input Device Configuration (idc) files define properties of the touchscreen, file
goes in /system/usr/idc

Example (from http://source.android.com/tech/input/input-device-configuration-
files.html)

This is an internal device, not an external peripheral attached to the USB

or Bluetooth bus.

device.internal = 1

The device should behave as a touch screen, which uses the same orientation

as the built-in display.

touch.deviceType = touchScreen

touch.orientationAware = 1

Additional calibration properties...

• Touchscreen vendors should be able to assist in tuning the (many)
other parameters in this file. The above is the bare minimum.

http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html
http://source.android.com/tech/input/input-device-configuration-files.html

18 SSG System Software Division

Key places to look

• Storage volumes
– Many devices have large internal storage, as well as external storage capabilities

– Starting with 3.2, storage_list.xml defines the storage volumes available on the
device, FUSE and sdcardd used to expose /data/media as /mnt/sdcard

<StorageList xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- removable is not set in nosdcard product -->

 <storage android:mountPoint="/mnt/sdcard"

 android:storageDescription="@string/storage_internal"

 android:primary="true"

 android:emulated="true"

 android:mtpReserve="500"/>

 <storage android:mountPoint="/mnt/sdcard2"

 android:removable="true"

 android:storageDescription="@string/storage_sd_card"

 android:emulated="false" />

 <storage android:mountPoint="/mnt/usbcard"

 android:removable="true"

 android:storageDescription="@string/storage_usb"

 android:emulated="false" />

</StorageList>

19 SSG System Software Division

Key places to look

• Android configuration and device overlay

– Many Android properties controlled by

frameworks/base/core/res/res/values/config.xml

• Tethering/networking configuration

• Animations, Icons, UI behavior

– Changes to config.xml should not go in this file, use the overlay mechanism

• DEVICE_PACKAGE_OVERLAYS – set to path containing overlay for a device. All

values in this overlay will override the values in the original xml file

• PRODUCT_PACKAGE_OVERLAYS – you may have multiple SKUs for a single device,

use this to override values specific only to a product.

– Overlay can be used to replace/override any frameworks/app resource

• frameworks/base/packages/SettingsProvider/res/values/defaults.xml

• frameworks/base/packages/SystemUI/res/values/config.xml

• packages/apps/Launcher2/res/values/config.xml

– AOSP example – device/samsung/tuna/overlay/

20 SSG System Software Division

Key places to look

• Product capabilities

– PackageManager looks at the capabilities (among other things) to perform

market filtering.

– CTS tests try to verify that these are correct also.

– frameworks/base/core/data/etc

– http://developer.android.com/guide/topics/manifest/uses-feature-element.html

• ro.sf.lcd_density

– Virtual screen density with discrete values. Providing a different value is possible

and can lead to some strange results.

– DENSITY_LOW = 120

– DENSITY_MEDIUM (default) = 160

– DENSITY_TV = 213

– DENSITY_HIGH = 240

– DENSITY_XHIGH = 320

http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html

21 SSG System Software Division

Key places to look

• Disable power management from init.<board>.rc
– write /sys/power/wake_lock 1

– This was helpful to rule out any power management issues

• Trouble with touchscreen? Have host mode working.
– Keyboard and mouse support can help with early bringup.

• Enable Dalvik portable mode:
– adb shell "echo dalvik.vm.execution-mode = int:portable >> /data/local.prop“

– Can also do this at build time by setting the property

• Hardware UI Rendering
– frameworks/base/libs/hwui

• Temporarily disable strictmode – lots of verbose log output can make it
hard to discern the real issues.

– persist.sys.strictmode.disable = true

22 SSG System Software Division

Cleaning up

• The value of a temp branch is that we can leave all the workarounds

we had to do for bring up in the git history for that branch, but clean

up when we pull those changes back to our master branch.

• We selectively cherry-picked changes and performed clean up on

the work done during bring up as it was pulled into master.

• Lifespan of the temp branch was about 48 hours. After that, it was

back to mainline development with the whole team ready to roll.

23 SSG System Software Division

Lessons learned

• Having the right expertise was critical. My team is very strong on

Linux fundamentals. Without their knowledge and help, all of the

planning in the world couldn’t have gotten it done.

• Co-location and real-time communication was critical.

• No team meetings, but short engineering huddles, to go over issues

in a very targeted fashion, were productive.

• Always maintain focus on parallelizing and unblocking people.

24 SSG System Software Division

Questions?

Russell Webb – Software Engineer

russell.webb@intel.com

mailto:russell.webb@intel.com

25 SSG System Software Division

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation.

