
| © 2012 Aptina Imaging Corporation1

© 2012 Aptina Imaging Corporation. All rights reserved. Products are warranted only to meet Aptina’s production data sheet specifications. Information, products, and/or
specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates only. Drawings not to
scale. Aptina and the Aptina logo are trademarks of Aptina Imaging Corporation. All other trademarks are the property of their respective owners.

Exposing the Android Camera Stack

Balwinder Kaur, Principal Software Architect

Joe Rickson, Principal Software Engineer

Android Builder’s Summit 2012
2.14.2012

| © 2012 Aptina Imaging Corporation2

Agenda
Hardware Independent Section

Overview of android.hardware.Camera

Prominent Camera Use Cases

High Level Architecture

JNI Layer

Native Camera service

Media Subsystem Interactions

Hardware Dependent Modules
Camera Hardware Abstraction Layer

Camera Device Driver

Camera Hardware Architecture

Future Trends
Q&A

| © 2012 Aptina Imaging Corporation3

Section I

Hardware Independent Camera Stack

| © 2012 Aptina Imaging Corporation4

Overview of android.hardware.Camera
6 Classes

Camera
Camera.CameraInfo
Camera.Parameters
Camera.Size
Camera.Face
Camera.Area

7 Callback Interfaces

• Camera.AutoFocusCallback

• Camera.ErrorCallback

• Camera.FaceDetectionListener

• Camera.OnZoomChangeListener

• Camera.PictureCallback

• Camera.PreviewCallback

• Camera.ShutterCallback

| © 2012 Aptina Imaging Corporation5

Handling Camera Hardware Fragmentation
Camera.Parameters class provides a “dumb” pipe to the hardware
Hardware capabilities can be queried for capabilities.
As an example, for Video Stabilization Feature

isVideoStabilizationSupported()

setVideoStabilization(boolean)

getVideoStabilization()

| © 2012 Aptina Imaging Corporation6

Android 4.0 Camera Features
Feature Platform

Feature
with API

In-built
Camera
Application Code

Proprietary
Solution

API
Level

Face Detection ✔ 14

Face Recognition ✔ 14

Panoramic Stitch ✔ 14

Video Snapshot ✔ 14

AE & AWB Lock ✔ 14

Continuous Focus Mode ✔ 14

Region Of Interest
(AE, AWB and AF)

✔ 14

Zero Shutter Lag* 14

Video Stabilization ✔ 15

Live Effects on Images / Video** ✔ 14

AE : Auto Exposure AWB : Auto White Balance AF : Auto Focus

* There is no API for ZSL. It is a hardware dependent feature.
** android.media.Effect

| © 2012 Aptina Imaging Corporation7

Prominent Camera Use Cases
Main Use Cases

Live Preview of Camera Stream

Live Preview + copy of the Frame returned to the application

Capture a frame

Video Recording of a Camera Stream

Secondary Use Cases
Configuring the Camera

Receiving more than an image back . e.g. face detection data

Event Callbacks: Shutter Clicked, AutoFocus Achieved

| © 2012 Aptina Imaging Corporation8

High Level Architecture

| © 2012 Aptina Imaging Corporation9

Source: Android Anatomy and Physiology, Google IO 2008

Android High Level Architecture

| © 2012 Aptina Imaging Corporation10

Source: Android Anatomy and Physiology, Google IO 2008

Hardware Abstraction Layer

Camera

| © 2012 Aptina Imaging Corporation11

Camera Subsystem

Application

Application framework

Camera Service

Camera HAL
Implementation

Camera Device Driver

Hardware Independent

Hardware Dependent

Camera Hardware

HAL = Hardware Abstraction Layer

| © 2012 Aptina Imaging Corporation12

Process View

App AppApp

Binder IPC
ICamera

Media server

Camera Service

Back Facing
Camera Hardware

Object

Front Facing
Camera Hardware

Object

Kernel Driver Kernel Driver

System Call System Call

Binder IPC
ISurfaceSurfaceflinger

| © 2012 Aptina Imaging Corporation13

Inside the Camera App

Media server

Camera Service
libcamera.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_C
amera.cpp

| © 2012 Aptina Imaging Corporation14

JNI Layer

| © 2012 Aptina Imaging Corporation15

JNI Layer

Media server

Camera Service
libcamera.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_C
amera.cpp

| © 2012 Aptina Imaging Corporation16

android_hardware_Camera
Creates a persistent context for callbacks from native code to Java
(JNICameraContext)
Holds references to the Java Camera, Face and Area objects.
If a Copy of the Preview Frame is requested by the app, then the copy from
native to java buffers is done here.
Allocates Memory from the Java memory heap for JPEG images.

| © 2012 Aptina Imaging Corporation17

Camera Service

| © 2012 Aptina Imaging Corporation18

Camera Service

Media server

Camera Service
libcamera.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_C
amera.cpp

| © 2012 Aptina Imaging Corporation19

Camera Service

Resource Manager for the Camera Hardware Asset
Runs in the media server process
It is a shared library libcameraservice.so
Main Functions:

Permission check android.permission.CAMERA
Ensures only one Client connects to a Camera
Hardware Object
Ensures each Process connects to a single
Camera Hardware Object
Redirects callbacks back to the app layer
Accessed over IBinder Interface
Number of Cameras Available
CameraInfo Details

| © 2012 Aptina Imaging Corporation20

Camera Service (contd.)
Android.mk file

frameworks/base/media/mediaserver/Android.mk

LOCAL_SHARED_LIBRARIES := \

 libaudioflinger \

 libcameraservice \

 libmediaplayerservice \

 libutils \

 libbinder

Gets instantiated as along with other components of the media server
 AudioFlinger::instantiate();

 MediaPlayerService::instantiate();

 CameraService::instantiate();

 AudioPolicyService::instantiate();

| © 2012 Aptina Imaging Corporation21

Interaction with the Media Subsystem

ICameraRecordingProxy and ICameraRecordingProxyListener were introduced
in Android 4.0
Allow apps to use the camera subsystem while the MediaRecorder is recording
the video frames.
ICameraRecordingProxy is a proxy of Icamera

startRecording

stopRecording

releaseRecordingFrame

ICameraRecordingProxyListener is an interface that allows the recorder to
receive video frames during recording.

dataCallbackTimestamp

| © 2012 Aptina Imaging Corporation22

Android Open Source Project (AOSP) Structure

Android Framework
Java: frameworks/base/core/java/android/hardware

JNI: frameworks/base/core/jni

Camera Service
frameworks/base/services/camera/libcameraservice/

IBinder Interfaces
frameworks/base/libs/camera/ICamera.h

Camera HAL Interface
frameworks/ base/services/camera/libcameraservice

Camera HAL
hardware/<vendor>/camera (typically)

| © 2012 Aptina Imaging Corporation23

Section II

Hardware-Dependent Camera Stack

| © 2012 Aptina Imaging Corporation24

Camera Hardware Abstraction Layer

Review of a Typical Implementation

| © 2012 Aptina Imaging Corporation25

Camera Stack – Camera HAL

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor Image Sensor
Processer

SurfaceFlinger
/Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation26

Android CameraHAL Library
The Camera Hardware Abstraction Layer (HAL) is a library that is specific to
the camera hardware platform

Written by hardware vendors (Qualcomm, TI, others)

CameraHAL maps Android Camera Service calls to driver functions
Android Froyo uses CameraHardwareInterface.h wrapper

Ice Cream Sandwich (ICS) and above use camera.h

CameraHAL low level interface communicates with the kernel level driver
It can support interfaces including Video for Linux 2 (V4L2) or OpenMax
(OMX)

Communicates with the driver through file I/O calls (open, close,
input/output controls (IOCTL), etc)

| © 2012 Aptina Imaging Corporation27

Sample CameraHAL Functional Diagram

CameraHAL

Memory Manager

Camera Driver
/dev/videoX

Camera Service I/F

Display Surface
Manager

Event
Notification
Manager

Camera Manager

Kernel

User

Source: TI OMAP4
 git.omapzoom.org

| © 2012 Aptina Imaging Corporation28

CameraHAL Block Diagram Discussion (1)
Parts of the previous block diagram are hardware vendor specific

May be different for each vendor and target platform

CameraHAL
Initialization – initialize the CameraHAL block and the target device driver

Camera Services interface – Handle each Camera Service request, dispatch requests to the
appropriate functional block

Camera State machine – maintain the camera state through different API calls (e.g., preview,
capture, recording, focus enable, etc).

Memory Manager
Cameras are memory intensive devices

On request, allocate buffers for preview, capture and other functions

Display Surface Manager
Controls preview and video displaying - helps to coordinate with the camera manager block

| © 2012 Aptina Imaging Corporation29

CameraHAL Block Diagram Discussion (2)
Display Surface Manager (cont)

Communicates to the display when a frame is ready for preview

Signals to the Camera Manager when the image buffer can be re-queued

Event Notification Manager
Supported callbacks include notify, data and timestamp

Notify – call on camera error, shutter, focus, zoom events or raw image notify event

Timestamp – call on video frame event

Data – call on preview, postview, compressed image, and other capture events

Call backs types are separated at the Camera Service level

Camera Manager
Handle camera activities

Setting parameters

Preview and snapshot callback

| © 2012 Aptina Imaging Corporation30

CameraHAL Preview Discussion
The following slides discuss the preview use case
Preview – displaying the camera image on the device display in real time
The startPreview application call initiates image preview

A single application level call results in a chain of CameraHAL and driver events

Preview continues until the stopPreview() application call
During preview, no application interaction unless a preview callback is
registered

| © 2012 Aptina Imaging Corporation31

Preview Start Up
Sequence Diagram (V4L2)

Application CameraHAL Kernel Driver
/dev/videoX

Camera Server

start preview start preview
VIDIOC_S_FMT

VIDIOC_REQBUFS

VIDIOC_QBUF

MMAP

VIDIOC_QUERYBUFS

VIDIOC_STREAMON

For each buffer

For each buffer

return

| © 2012 Aptina Imaging Corporation32

Preview Operation
Sequence Diagram (V4L2)

Application CameraHAL Kernel Driver
/dev/videoX

Camera Server

start preview start preview

Preview image received
signal

VIDIOC_DQBUF

VIDIOC_QBUF

Send image to
surface/Display

If preview callback
enabled, copy image
and notify Camera
Server

Preview
Notify

| © 2012 Aptina Imaging Corporation33

Camera Preview Interaction with
the Display Subsystem

Matching the timing of 2 events
Preview frames arrive asynchronously from the camera

The display subsystem refreshes the display at regular intervals

Potential mismatch between these 2 system

Sending the preview image to the display subsystem
The preview frame is removed from the V4L2 queue of buffers

The frame is sent to the display subsystem

The frame memory is shared by the display subsystem

Or the frame is copied to a buffer for display subsystem use

The preview frame may be copied to a user space buffer if preview callback is enabled

The frame is returned to the V4L2 queue of buffers when done

| © 2012 Aptina Imaging Corporation34

Camera Device Driver

| © 2012 Aptina Imaging Corporation35

Camera Stack – Camera Driver

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor Image Sensor
Processer

SurfaceFlinger
/Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation36

Android Kernel Camera Driver
The kernel driver presents a standard interface for different types of camera
hardware

Camera hardware specific attributes are (usually) handled by the low
level kernel driver

Image Sensor Processor (ISP) vs. smart image sensor - differences are
handled at the driver level

For Android, Video for Linux 2 (V4L2) is used in many implementations
V4L2 has been in existence for many years

OpenMax (OMX) is also used for a low level driver interface by some
vendors.

| © 2012 Aptina Imaging Corporation37

V4L2 Kernel Driver Block Diagram

V4L2 Driver Interface
- IOCTL support/dispatch

- V4L2 driver infrastructure

Controlling Interface
- Support for different device configurations

- Control device flow

Buffer/Memory Management
- Memory allocation (if needed)

- Buffer management
- Buffer queue/de-queue

Camera HW Management
- One of these blocks for each camera

type
- Device discovery

- Device initialization
- Power management

- Set/get device specific parameter
- Enable/disable image streaming

| © 2012 Aptina Imaging Corporation38

Android Linux Kernel Functionality
Support for multiple camera types

Camera specific code is localized to one file (the subdev device)

Compile time option to add other cameras (one driver can support many
different camera hardwares)

More cameras mean a longer start up time since the driver is searching for each
device

The driver manages the underlying hardware topology (e.g., ISP + sensor, smart
sensor)
For two or more cameras, the V4L2 driver creates additional device nodes

Devices show up as /dev/video0 (primary), /dev/video1 (secondary), …

| © 2012 Aptina Imaging Corporation39

V4L2 Kernel Driver Resources
Memory

Memory can be either driver-allocated or user-provided

Moving image from the camera to memory should be done through hardware DMA (Direct Memory
Access)

Hardware memory management required to avoid contiguous memory requirement

Interrupts
Camera ports support for interrupts on events such as frame start, finish, focus events, etc.

Camera Control: I2C/SPI
Communications with the camera is usually done with I2C by either writing or reading sensor registers.

I2C is somewhat slow, this limits the number of register accesses during a frame. SPI (Serial Peripheral
Interface) is an alternative to I2C.

Control Signals/Power/GPIO
All controlled by the low level driver

Power
Sensor power management is critical to embedded device operation

Save power by disabling the sensor and sensor processor when not used

| © 2012 Aptina Imaging Corporation40

V4L2 Driver Buffer Management
One or more buffers are supported
User buffers or kernel-allocated buffers are supported
Buffers are treated the same for preview, capture, video
(output resolution does not matter)
Buffers are queued to a circular list
Buffer filling starts when the V4L2 Stream_On command
is executed
Once filled, the CameraHAL de-queues a buffer,
processes the buffer, then re-queues the buffer
The Stream_Off command causes all buffer to be
released

| © 2012 Aptina Imaging Corporation41

Typical Android V4L2 Start up Sequence
The V4L2 call for the preview are given below

V4L2 Call Title Comments
V4L2_Open() Open a V4L2 Device

VIDIOC_S_FMT IOCTL: Set format Set both resolution and output
pixel format

VIDIOC_G_PARM IOCTL: Get camera parameter Get the camera frame rate

VIDIOC_S_PARM IOCTL: Set camera parameter Set the camera frame rate

VIDIOC_CROPCAP IOCTL: Get the camera cropping
capabilities

Get the current crop rectangle

VIDIOC_S_CROP IOCTL: Set the cropping rectangle Set the desired cropping
rectangle

VIDIOC_REQBUFS IOCTL: Request camera buffers Request buffer support from
the driver (user vs. kernel)

Loop:
VIDIOC_QUERYBUF

IOCTL: Return buffer address
information

Used for mapping buffers to
user space

 V4L2_MMAP Memory map buffers to user space Make buffers visible to user
applications

| © 2012 Aptina Imaging Corporation42

Typical V4L2 Start up Sequence
V4L2 driver start up sequence (cont)

Typical Android V4L driver shut-down sequence

V4L2 Call Title Comments
Loop: VIDIOC_QBUF IOCTL: Add buffer to queue Queue of buffers the kernel

manages

VIDIOC_STREAM_ON IOCTL: Start image streaming Camera/Driver starts filling the
queued buffers

V4L2 Call Title Comments
VIDIOC_STREAM_OFF IOCTL: Stop image streaming Stop camera/driver streaming

V4L2_Close() Close the camera device Disable camera operations,
free resources

| © 2012 Aptina Imaging Corporation43

V4L2 Driver Directions
Other Topics

V4L2 Media Controller Architecture

Exposing the hardware image processor to the calling application

Allows for greater programmer control

Supported only on open source architectures

Proprietary ISP software moves to user space

Many ISP providers wish to hide their hardware

Moving ISP code to user space handles this (avoid kernel open source
issues)

Driver source code location:
{kernel sources}/drivers/media/video

| © 2012 Aptina Imaging Corporation44

Camera Hardware Overview

| © 2012 Aptina Imaging Corporation45

Camera Stack – Camera Hardware

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor Image Sensor
Processer

SurfaceFlinger
/Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation46

Camera Hardware Introduction
Types of Sensor Hardware

Raw or Bayer Sensor

Outputs a Bayer (unprocessed) image Bayer Pattern

Used with internal or external Image Sensor Processor (ISP)

Internal ISP – System Processor and ISP bundled together

External ISP – External companion chip

Controls include exposure time and analog/digital gains

Smart or System On a Chip (SOC) Sensor YCrCb Pattern

ISP built into the sensor RGB565 Pattern

Outputs processed YUV/RGB/Other formats

Controls include exposure, white balance, gamma correction, and many others

| © 2012 Aptina Imaging Corporation47

Bayer Sensor Block Diagram

Example - MT9M032 – 1.6MP Image Sensor

| © 2012 Aptina Imaging Corporation48

SOC Sensor Block Diagram

Example - MT9M131 – 1.3 MP Image Sensor

| © 2012 Aptina Imaging Corporation49

Camera Hardware Inputs/Outputs
Controlled by the sensor driver
Inputs:

Power/Ground (analog, digital power/grounds)

Control Signals

Reset – reset the camera to a default state

Standby – place the camera in low power standby mode

GPIO, others – control camera peripherals such as autofocus, flash, etc.

Clock In (system clock in)

Register control through I2C, SPI, or others

Output
Data Output

Parallel (8, 10, 12, 14 bits)

Serial (MIPI)

Control Signals (frame/line valid)

Clock Out (pixel clock out)

| © 2012 Aptina Imaging Corporation50

A Peek into the Future

| © 2012 Aptina Imaging Corporation51

Camera Application Trends
Android Applications – memory limitation 16MB ~ 24MB

Higher pixel sizes and Bursty modes put a strain on the system

Computer Vision Applications go mainstream
APIs on Object Tracking, Gesture Recognition become more common
place

Computation Photography application
Developers get fine grained control of flash and camera

| © 2012 Aptina Imaging Corporation52

Camera Hardware Trends
Back Side Illumination(BSI) vs. Front Side Illumination(FSI)

BSI can add up to 30% more light gathering capability

Smaller Pixels
Constant push to reduce pixel and sensor package sizes

Faster data output rates, higher clock speeds
1080p30, 1080p60

Serial data interfaces enable increased sensor output speeds

High Dynamic Range
Ability to capture larger exposure range

3D Imaging
Use of 2 cameras to generate a 3D image

| © 2012 Aptina Imaging Corporation53

Q&A

| © 2012 Aptina Imaging Corporation54

References
http://developer.android.com/
http://www.codeaurora.org
http://omappedia.org
http://source.android.com

http://developer.android.com/
http://www.codeaurora.org/
http://omappedia.org/
http://source.android.com/

	Slide 1
	Agenda
	Slide 3
	Overview of android.hardware.Camera
	Handling Camera Hardware Fragmentation
	Android 4.0 Camera Features
	Prominent Camera Use Cases
	Slide 8
	Android High Level Architecture
	Hardware Abstraction Layer
	Camera Subsystem
	Process View
	Inside the Camera App
	Slide 14
	JNI Layer
	android_hardware_Camera
	Slide 17
	Camera Service
	Camera Service
	Camera Service (contd.)
	
Interaction with the Media Subsystem
	Android Open Source Project (AOSP) Structure
	Slide 23
	Slide 24
	Camera Stack – Camera HAL
	Android CameraHAL Library
	Sample CameraHAL Functional Diagram
	CameraHAL Block Diagram Discussion (1)
	CameraHAL Block Diagram Discussion (2)
	CameraHAL Preview Discussion
	Preview Start Up
Sequence Diagram (V4L2)
	Preview Operation
Sequence Diagram (V4L2)
	Camera Preview Interaction with
the Display Subsystem
	Slide 34
	Camera Stack – Camera Driver
	Android Kernel Camera Driver
	V4L2 Kernel Driver Block Diagram
	Android Linux Kernel Functionality
	V4L2 Kernel Driver Resources
	V4L2 Driver Buffer Management
	Typical Android V4L2 Start up Sequence
	Typical V4L2 Start up Sequence
	V4L2 Driver Directions
	Slide 44
	Camera Stack – Camera Hardware
	Camera Hardware Introduction
	Bayer Sensor Block Diagram
	SOC Sensor Block Diagram
	Camera Hardware Inputs/Outputs
	Slide 50
	Camera Application Trends
	Camera Hardware Trends
	Q&A
	References
	Slide 55

