Linux on AArch64
ARM 64-bit Architecture

Catalin Marinas

LinuxCon North America 2012

roctV A
>r\d® -‘-he ArCh\te V\10(\ |
| \

. !
. 5100
- D\%‘,c ’ The Architecture for the Digital VWorld® ARM

Introduction
= Previous ARM architecture, ARMv7, is 32-bit only

= Cortex-* processors family
= |LPAE and virtualisation support

= The latest ARM architecture, ARMv8, introduces 64-bit
capability alongside the existing 32-bit mode
= First release covers the Applications processor profile

= Addresses the need for larger virtual address space and high
performance

= Targets both mobile and server markets
= ARMv8 has two execution modes

= AArch64 — 64-bit registers and memory accesses, new instruction set
= AArch32 (optional) — backwards compatible with ARMv7-A
= Few additional enhancements

] ‘ The Architecture for the Digital World® ARM®

AArch64 Overview

= New instruction set (A64)
= 32-bit opcodes
= Can have 32-bit or 64-bit arguments
= Addresses assumed to be 64-bit
= Primarily targeting LP64 and LLP64 data models
= Only conditional branches, compares and selects
= No LDM/STM (only pair load/store — LDP/STP)
= | oad-acquire/store-release exclusive accesses (implicit barrier)
= Advanced SIMD and FP support
= FP mandated by the ABI
= Cryptography support
= 31 general purpose 64-bit registers (X0-X30)
= PC, SP are special registers
= Dedicated zero register (Xzr)

®
The Architecture for the Digital VWorld® ARM

AArch64 Exception Model

Normal (non-secure) world Secure world

EL3 (TrustZone) Monitor

Virtual Machine Monitor (VMM) or
Hypervisor

Guest Operating System1 }| Guest Operating System2

R I T

EL2

Secure World OS

Trusted App1 j§ Trusted App2

ELO

4 Uol}ISuel} ZEYIYY<-P9UIIYY
uoIlISUE.} H9UIIYY<-ZEYIIYY =

®
The Architecture for the Digital World® ARM

AArch64 Exception Model

= Privilege levels: EL3 — highest, ELO — lowest

= Transition to higher levels via exceptions
= Interrupts, page faults etc.
= SVC for transition to EL1 (system calls)
= HVC for transition to EL2 (hypervisor calls)
= SMC for transition to EL3 (secure monitor call)
= Dedicated ELR register for the return address (banked at each EL)

= Transition to lower levels using the ERET instruction

= Register width cannot be higher in lower levels
= E.g. no 64-bit ELO with 32-bit EL1

= Transition between AArch32 and AArch64 via exceptions
= AArch32/AArch64 interworking not possible

= Separate stack pointer (SP) at each EL

l The Architecture for the Digital World® ARM®

AArch64 MMU Support

= Separate TTBR register
for user and kernel

= Selection based on higher
bits of the virtual address

= Maximum 48-bit virtual
address for each TTBR
= Upper 8 bits of the
address can be configured
for Tagged Pointers

= Linux does not currently
use them

= Maximum 48-bit physical
address

= 2-stage translation

Not mapped
(Fault)

Virtual Address

TTBRO

user space

s —
TTBR1
kernel space

_ - 264

_ 0xFFFF000000000000, (264 - 248)
dependent on TCR_EL1.T1SZ

_ _0x0000FFFFFFFFFFFF, (248 — 1)

dependent on TCR_EL1.T0SZ

--0

®
The Architecture for the Digital World® ARM

AArch64 MMU Support

Stage 1 translation owned by

_I_I each Guest OS Stage 2 translation owned
by the VMM

Hardware has 2-stage memory
translation

Tables from Guest OS translate
VA to IPA

... Second set of tables from VMM
:L| translate IPA to PA

Allows aborts to be routed to
appropriate software layer

L Real System Physical
address map

Virtual address map of

“Intermediate Physical” address
each App on each Guest OS

map of each Guest OS

E 1 ®
I The Architecture for the Digital VWorld® ARM

AArch64 MMU Support

= Two different translation granules: 4KB and 64KB
= The smallest page mapping supported
= The size of a translation table
= Can be independently configured for TTBRO and TTBR1

= Number of translation tables and maximum VA range:
= 4KB and 4 levels => 48-bit VA
= 64KB and 3 levels => 48-bit VA (top table partially populated)
= 4KB and 3 levels => 39-bit VA (currently used by AArch64 Linux)
= 64KB and 2 levels => 42-bit VA
= | arge page (block) mapping supported
= 2MB and 1GB with 4KB page configuration
= 512MB with 64KB page configuration

T] ‘ The Architecture for the Digital VWorld® ARM®

AArch32 Support

= AArch32 can be optionally present at any level

= ELO most likely for user application support
= EL1 needed for 32-bit guest OS

= Execution state change only at exception entry/return
= No branch and link (interworking) between AArch32 and AArch64
= Increasing EL cannot decrease register width or vice versa
= Architected relationship between the AArch32 and AArch64
registers

= AArch32 Rn registers accessed via corresponding AArch64 Xn
registers

o
- j The Architecture for the Digital VWorld® ARM

AArch64 Linux Overview

= New architecture port: arch/arme4/

= Re-using generic code and data
= asm-generic/unistd.h

= Building requires aarch64-linux-gnu toolchain
= No common AArch32/AArch64 toolchain

= Support for both AArch64 and AArch32 (compat) user
applications

= VDSO

= Signal return code
= Optimised gettimeofday()

= Not fully optimised at this stage
= Testing done on software model

3 ®
N ‘ The Architecture for the Digital World® ARM

Linux Kernel Booting

= Linux required to run in Normal (Non-secure) mode
= Virtualisation extensions not available in secure mode

= Host OS must be started in EL2 mode for virtualisation
support

= Switches to EL1 shortly after boot, the default kernel execution mode

= Guest operating systems start in EL1
= The Linux kernel automatically detects the exception level

= Kernel image loaded at a pre-defined address
= |mage file header contains the relevant information

= Standard booting protocol
= Currently driven by FDT (mailbox address for CPU release)

= Proposed standard secure APl (SMC) for CPU boot, reset and power
management (Power State Coordination Interface)

l The Architecture for the Digital World® ARM®

Linux MMU Handling

= 39-bit virtual address for both user and kernel
= 0000000000000000-0000007£££££EEEF (512GB): user

= [architectural gap]

m f££ff£f£8000000000-ffffffbbfffeffff
m ffffffbbffff0000-f£f£ffffbcffffffff
m fff£f£ffbc00000000-f£££f£ffbdffffffff
m ffff£ffbe00000000-f£f£f£f£ffbffbffffff
m ffffffbffc000000-f££f££ffbfffffffff
m ffff£f£fc000000000-f£££££££££££££EE

~240MB): vmalloc
64KB): [guard]

8GB): vmemmap
~8GB): [guard]
64MB): modules
256GB): mapped RAM

AN N N N N N

= 4KB page configuration
= 3 levels of page tables (pgtable-nopud.h)
= Linear mapping using 4KB, 2MB or 1GB blocks
= AArch32 (compat) supported

] ‘ The Architecture for the Digital World® ARM®

Linux MMU Handling

= 64KB page configuration
= 2 levels of page tables (pgtable-nopmd.h)
= Linear mapping using 64KB or 512MB blocks
= AArch32 (compat) not supported because the 32-bit ABl assumes
4KB pages
= SPARSEMEM support

= SPARSEMEM_ VMEMMAP optimisation for virtual mapping of the
struct page array (mem_map)

= Huge pages
= Hugetlbfs
= Transparent huge pages

®
The Architecture for the Digital VWorld® ARM

Linux Exception Handling

= SP1 register used for the kernel stack (running in EL1)
= Default 8KB size

= SPO used for the user stack (running in ELO)

= Returning to user is done with the ERET instruction
= Registers restored from the kernel stack (pt_regs) by the return code
= Return address automatically restored from the ELR register
= PSTATE automatically returned from SPSR
= Mode switching to ELO_SPO
= AArch64/AArch32 execution state selected by the PSTATE.nRW bit

= Kernel entered at EL1 as a result of an exception
= Mode switching to EL1_SP1 and AArch64

= Return address automatically saved to ELR
= PSTATE automatically saved to SPSR

l The Architecture for the Digital World® ARM®

Linux Exception Handling

= The general purpose registers saved onto the kernel stack (pt_regs)
by the exception entry code

= Exceptions while in kernel similar to the user->kernel
transition
= No mode switching (no IRQ etc. modes)
= Using the current stack
= Returning with ERET but to the same exception level and stack

®
The Architecture for the Digital VWorld® ARM

AArch32 (compat) Support

= Must support the ARMv7 Linux EABI for compat tasks
= Different set of system calls (unistd32.h)
= Compat user structures
= No SWP instruction, no unaligned LDM/STM access

= Supports both ARM and Thumb-2 32-bit user tasks
= Supports 32-bit ptrace
= Address space limited to 4GB

= Emulated vectors page

= ARM Linux EABI expects helper routines in the vectors page
accessible by user tasks

o
BT j The Architecture for the Digital VWorld® ARM

Platform (SoC) Support

= Different targets: embedded systems and servers

= FDT currently mandated for new platforms
= ACPI may be required, especially for servers

= Minimal platform code
= Most code under drivers/
= FDT for platform description

= Standardised firmware interface
= Booting protocol
= SMC API for CPU power management

= Generic (architected) timers
= Generic interrupt controller (GIC)

3 ®
N ‘ The Architecture for the Digital World® ARM

AArch64 Linux Roadmap

= AArch64 Linux kernel currently under public review
= |nitially only the core architecture support

= GCC and binutils patches published

= Collaborate with Linaro and the Linux community to bring
broader filesystem and applications support to AArchc4

= SoC support

= Future ACPI support
= New features

= Huge pages

= KVM

= NUMA

= Power and performance improvements
= \When hardware becomes available

o
BT j The Architecture for the Digital VWorld® ARM

Reference
= AArch64 Linux Git tree

= qit://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64.git

= AArch64 instruction set
= http://infocenter.arm.com/help/topic/com.arm.doc.genc010197a/index.html

= AArch64 ABI (PCS, ELF, DWARF, C++)

= http://infocenter.arm.com/help/topic/com.arm.doc.ihi0059a/index.html

= Power State Coordination Interface
= http://infocenter.arm.com/help/topic/com.arm.doc.den0022a/index.html

®
The Architecture for the Digital VWorld® ARM

Questions

®
The Architecture for the Digital World® ARM

