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Introduction 
§ Previous ARM architecture, ARMv7, is 32-bit only 

§  Cortex-* processors family 
§  LPAE and virtualisation support 

§ The latest ARM architecture, ARMv8, introduces 64-bit 
capability alongside the existing 32-bit mode 
§  First release covers the Applications processor profile 
§  Addresses the need for larger virtual address space and high 

performance 
§  Targets both mobile and server markets 

§ ARMv8 has two execution modes 
§  AArch64 – 64-bit registers and memory accesses, new instruction set 
§  AArch32 (optional) – backwards compatible with ARMv7-A 

§  Few additional enhancements 
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AArch64 Overview 
§ New instruction set (A64) 

§  32-bit opcodes 
§  Can have 32-bit or 64-bit arguments 
§  Addresses assumed to be 64-bit 

§  Primarily targeting LP64 and LLP64 data models 
§  Only conditional branches, compares and selects 
§  No LDM/STM (only pair load/store – LDP/STP) 
§  Load-acquire/store-release exclusive accesses (implicit barrier) 
§  Advanced SIMD and FP support 

§  FP mandated by the ABI 
§  Cryptography support 

§ 31 general purpose 64-bit registers (X0-X30) 
§  PC, SP are special registers 
§  Dedicated zero register (Xzr) 
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AArch64 Exception Model 
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AArch64 Exception Model 
§ Privilege levels: EL3 – highest, EL0 – lowest 
§ Transition to higher levels via exceptions 

§  Interrupts, page faults etc. 
§  SVC for transition to EL1 (system calls) 
§  HVC for transition to EL2 (hypervisor calls) 
§  SMC for transition to EL3 (secure monitor call) 
§  Dedicated ELR register for the return address (banked at each EL) 

§ Transition to lower levels using the ERET instruction 
§ Register width cannot be higher in lower levels 

§  E.g. no 64-bit EL0 with 32-bit EL1 

§ Transition between AArch32 and AArch64 via exceptions 
§  AArch32/AArch64 interworking not possible 

§ Separate stack pointer (SP) at each EL 
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AArch64 MMU Support 
§ Separate TTBR register 

for user and kernel 
§  Selection based on higher 

bits of the virtual address 
§  Maximum 48-bit virtual 

address for each TTBR 

§ Upper 8 bits of the 
address can be configured 
for Tagged Pointers 
§  Linux does not currently 

use them 

§ Maximum 48-bit physical 
address 

§ 2-stage translation 
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AArch64 MMU Support 
Stage 1 translation owned by 

each Guest OS 
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AArch64 MMU Support 
§ Two different translation granules: 4KB and 64KB 

§  The smallest page mapping supported 
§  The size of a translation table 
§  Can be independently configured for TTBR0 and TTBR1 

§ Number of translation tables and maximum VA range: 
§  4KB and 4 levels => 48-bit VA 
§  64KB and 3 levels => 48-bit VA (top table partially populated) 
§  4KB and 3 levels => 39-bit VA (currently used by AArch64 Linux) 
§  64KB and 2 levels => 42-bit VA 

§ Large page (block) mapping supported 
§  2MB and 1GB with 4KB page configuration 
§  512MB with 64KB page configuration 
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AArch32 Support 
§ AArch32 can be optionally present at any level 

§  EL0 most likely for user application support 
§  EL1 needed for 32-bit guest OS 

§ Execution state change only at exception entry/return 
§  No branch and link (interworking) between AArch32 and AArch64 
§  Increasing EL cannot decrease register width or vice versa 

§ Architected relationship between the AArch32 and AArch64 
registers 
§  AArch32 Rn registers accessed via corresponding AArch64 Xn 

registers 
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AArch64 Linux Overview 
§ New architecture port: arch/arm64/ 
§ Re-using generic code and data 

§  asm-generic/unistd.h 

§ Building requires aarch64-linux-gnu toolchain 
§  No common AArch32/AArch64 toolchain 

§ Support for both AArch64 and AArch32 (compat) user 
applications 

§ VDSO 
§  Signal return code 
§  Optimised gettimeofday() 

§ Not fully optimised at this stage 
§  Testing done on software model 
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Linux Kernel Booting 
§ Linux required to run in Normal (Non-secure) mode 

§  Virtualisation extensions not available in secure mode 

§ Host OS must be started in EL2 mode for virtualisation 
support 
§  Switches to EL1 shortly after boot, the default kernel execution mode 

§ Guest operating systems start in EL1 
§  The Linux kernel automatically detects the exception level 

§ Kernel image loaded at a pre-defined address 
§  Image file header contains the relevant information 

§ Standard booting protocol 
§  Currently driven by FDT (mailbox address for CPU release) 
§  Proposed standard secure API (SMC) for CPU boot, reset and power 

management (Power State Coordination Interface) 



12 

Linux MMU Handling 
§ 39-bit virtual address for both user and kernel 

§  0000000000000000-0000007fffffffff (512GB): user 
§  [architectural gap] 
§  ffffff8000000000-ffffffbbfffeffff (~240MB): vmalloc 
§  ffffffbbffff0000-ffffffbcffffffff (64KB): [guard] 
§  ffffffbc00000000-ffffffbdffffffff (8GB): vmemmap 
§  ffffffbe00000000-ffffffbffbffffff (~8GB): [guard] 
§  ffffffbffc000000-ffffffbfffffffff (64MB): modules 
§  ffffffc000000000-ffffffffffffffff (256GB): mapped RAM 

§ 4KB page configuration 
§  3 levels of page tables (pgtable-nopud.h) 
§  Linear mapping using 4KB, 2MB or 1GB blocks 
§  AArch32 (compat) supported 
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Linux MMU Handling 
§ 64KB page configuration 

§  2 levels of page tables (pgtable-nopmd.h) 
§  Linear mapping using 64KB or 512MB blocks 
§  AArch32 (compat) not supported because the 32-bit ABI assumes 

4KB pages 

§ SPARSEMEM support 
§  SPARSEMEM_VMEMMAP optimisation for virtual mapping of the 

struct page array (mem_map) 

§ Huge pages 
§  Hugetlbfs 
§  Transparent huge pages 
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Linux Exception Handling 
§ SP1 register used for the kernel stack (running in EL1) 

§  Default 8KB size 

§ SP0 used for the user stack (running in EL0) 
§ Returning to user is done with the ERET instruction 

§  Registers restored from the kernel stack (pt_regs) by the return code 
§  Return address automatically restored from the ELR register 
§  PSTATE automatically returned from SPSR 
§  Mode switching to EL0_SP0 
§  AArch64/AArch32 execution state selected by the PSTATE.nRW bit 

§ Kernel entered at EL1 as a result of an exception 
§  Mode switching to EL1_SP1 and AArch64 
§  Return address automatically saved to ELR 
§  PSTATE automatically saved to SPSR 
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Linux Exception Handling 
§  The general purpose registers saved onto the kernel stack (pt_regs) 

by the exception entry code 

§ Exceptions while in kernel similar to the user->kernel 
transition 
§  No mode switching (no IRQ etc. modes) 
§  Using the current stack 
§  Returning with ERET but to the same exception level and stack 
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AArch32 (compat) Support 
§ Must support the ARMv7 Linux EABI for compat tasks 

§  Different set of system calls (unistd32.h) 
§  Compat user structures 
§  No SWP instruction, no unaligned LDM/STM access 

§ Supports both ARM and Thumb-2 32-bit user tasks 
§ Supports 32-bit ptrace 
§ Address space limited to 4GB 
§ Emulated vectors page 

§  ARM Linux EABI expects helper routines in the vectors page 
accessible by user tasks 
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Platform (SoC) Support 
§ Different targets: embedded systems and servers 
§ FDT currently mandated for new platforms 

§  ACPI may be required, especially for servers 

§ Minimal platform code 
§  Most code under drivers/ 
§  FDT for platform description 

§ Standardised firmware interface 
§  Booting protocol 
§  SMC API for CPU power management 

§ Generic (architected) timers 
§ Generic interrupt controller (GIC) 
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AArch64 Linux Roadmap 
§ AArch64 Linux kernel currently under public review 

§  Initially only the core architecture support 

§ GCC and binutils patches published 
§ Collaborate with Linaro and the Linux community to bring 

broader filesystem and applications support to AArch64 
§ SoC support 

§  Future ACPI support 

§ New features 
§  Huge pages 
§  KVM 
§  NUMA 

§ Power and performance improvements 
§  When hardware becomes available 
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Reference 
§ AArch64 Linux Git tree 

§  git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64.git 

§ AArch64 instruction set 
§  http://infocenter.arm.com/help/topic/com.arm.doc.genc010197a/index.html 

§ AArch64 ABI (PCS, ELF, DWARF, C++) 
§  http://infocenter.arm.com/help/topic/com.arm.doc.ihi0059a/index.html 

§ Power State Coordination Interface 
§  http://infocenter.arm.com/help/topic/com.arm.doc.den0022a/index.html 
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Questions 


