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Introducing 

1. Purpose of a low-overhead ring-buffer                     

in a virtualization system 

2. “IVRing”, a low-overhead ring-buffer 

3. IVRing VS general methods 

4. How do we implement a ring-buffer? 

5. Summary and future work 

 

In this presentation… 

[1] To talk about new tracing buffer(1-3) 

[2] To share problems of our implementation(4) 

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved 
2 



Introducing 

1. Purpose of a low-overhead ring-buffer                  

in a virtualization system 

2. “IVRing”, a low-overhead ring-buffer 

3. IVRing VS general methods 

4. How do we implement a ring-buffer? 

5. Summary and future work 

 

In this presentation… 

[1] To talk about new tracing buffer 

[2] To share problems of our implementation 

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved 
3 



Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved 
4 

Overview 

In this presentation, 

we focus on this part. 
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- Need to send trace data from guests to a host 

  ⇒ One of methods is to use network I/O. 

 

-To merge all trace data, a lot of data are sent. 

  ⇒ High bandwidth, MAX12Mbps a guest, are required. 
        [15000(pb/s) * 100(byte/pb) * 8(bit/byte) ~ 12Mbps] 

 *pb: probes 

- Using network I/O takes high overhead for application on guests.  

Issue of Present Tracing 
           in A Virtualization System 

Host 

Guest 1 Guest 2 Guest N ・・・ 

・・・ 



Goal and Methods 
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To minimize effects for applications on guests 

⇒ Decrease overhead caused by high-bandwidth tracing 

<Goal> 

 

<Methods> 

 (1) SSH & stdout ⇒ use network I/O 

(2) NFS ⇒ use network I/O and disk I/O 

(3) IVShmem 

      - Zero-copy communication between a guest and a host 

      ⇒ We don’t need to use network I/O and disk I/O. 

We adopted the IVShmem method. 
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What is IVShmem? 
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Host 

QEMU 

Guest1 

QEMU 

Guest2 

IVShmem IVShmem 

driver driver 

IVSS 

POSIX 

shmem 

Mapping 

Zero copy Zero copy 

Notify by eventfd 

• A virtual PCI RAM device originally for communication 

between two guests 

– ivshmem_server(IVSS) maps IVShmem POSIX shmem on a 

host. 

– Eventfd is available. ⇒notify to another guest 



A Ring-Buffer on IVShmem 
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Host 

QEMU 

Guest 

IVShmem 

IVRing driver 

IVSS 

POSIX 

shmem 

IVTrace 

A ring buffer is 

constructed on IVShmem 

Data path for trace data of a guest 

Notify to IVTrace 

Read trace data 

• A ring-buffer is constructed on IVShmem as a data 

path for trace data of a guest. 

• IVTrace can read the data without memory copying. 
– A driver notifies to IVTrace, and IVTrace statrs to read trace data. 

• We use eventfd to notify to IVTrace. 



IVRing 
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Host 

QEMU 

Guest 

Writer 

(SystemTap) 

IVShmem 

driver 

IVSS 

POSIX 

shmem 

IVTrace 

Tne compornents of IVRing 



IVRing 
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Host 

QEMU 

Guest 

Writer 

(SystemTap) 

IVShmem 

driver 

Record 

trace data 

IVSS 

POSIX 

shmem 

IVTrace 

API for SystemTap 

is implemented. 

API for SystemTap is implemented on a ring-buffer. 



IVRing 
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Host 

QEMU 

Guest 

Writer 

(SystemTap) 

IVShmem 

driver 

IVSS 

POSIX 

shmem 

IVTrace 

When data volume exceed a 

threshold, IVRing notifies 

IVTrace of what trace data 

are written. This notification 

is operated via eventfd. 

Notification using eventfd makes IVTrace operate. 



IVRing 
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Host 

QEMU 

Guest 

Writer 

(SystemTap) 

IVShmem 

driver 

IVSS 

POSIX 

shmem 

IVTrace 

Since ivshmem_server 

maps IVShmem and 

IVTrace to POSIX shared 

memory,  IVTrace can read 

trace data without copying 

memory. 

Start to 

read data 

IVTrace reads a ring buffer without copying memory. 



IVRing 
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Host 

QEMU 

Guest 

Writer 

(SystemTap) 

IVShmem 

driver 

IVSS 

POSIX 

shmem 

IVTrace 

Output trace data 

IVTrace outputs trace data of a guest. 
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Evaluation 
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We compared the performance of each method. 

 ① IVRing: record trace data in IVRing 

 ② NFS: output trace data on a NFS 

 ③ SSH: output trace data using stdout via SSH 

Host 

 

Guest 

 SystemTap 

driver 

IVTrace 
SSH&stdout 

SSH server 

notify 

NFS 

①IVRing 

②NFS ③SSH 

Unixbench 

(drhystone 2) kernel:3.3.4-3, 

1VCPU, 

Memory:2GB 

Kernel:3.3.1-5,  

Intel Xeon x5660@ 

2.80GHz(6core), 

Memory:50GB 



Performance Comparison Result1 
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Lower is better 

We compared 3 pattern based on the bare environment. 

IVRing is much smaller load than NFS and SSH. 
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Present Problems - SMP 
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We implemented IVRing as a prototype,  

so IVRing has the problem of scalability. 

1. Multiple VCPU Support 

    ・Spinlock ring-buffer is implemented to avoid competition. 

    ・For scalability, a lockless ring-buffer is needed. 

    ⇒ One VCPU requires one ring-buffer.  

    ・Since IVShmem emulates a PCI device, the memory size is 

limited to power of two. 

       ⇒ Unusable memory region remains on IVShmem. 

        c.f. 3VCPUs are assigned to a guest. 

VCPU0 VCPU1 VCPU2 

Not used 
Memory region of 

IVShmem 



Present Problems – Live Migration 

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved 
20 

We implemented IVRing as a prototype,  

so IVRing has the problem of scalability. 

2. Live Migration Support 

   - Functions of IVSS related to eventfd 

   - I/F for Live Migration 

   - Operation of IVTrace in Live Migration 

   - Assigning of shared memory … etc 

QEMU IVShmem 

Host IVSS IVTrace 

Another machine 

× × 

Live Migration 

Guest IVRing 



Summary And Future Work 
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<Summary> 

- We implemented IVRing, a low-overhead ring-

buffer, as a driver of IVShmem, and a reader of 

IVRing 

- IVRing implemented as a prototype has some 

work to do. 

<Future Work> 

- To be useable in tracing system existing in-kernel  

- To be useable in SMP environment 

- To design for Live Migration 

- To implement a new virtual device for tracing 

 

 



A1. How to Use IVRing 
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1. Run IVShmem_server on a host 

     assign an UNIX socket path(PATH), a shmem object,                    

and shmem size(SIZE) 

2. Boot a QEMU and a guest with following options 

    - device ivshmem,size=<SIZE>,chardev=ivshmem 

    - chardev socket,path=<PATH>,id=ivshmem 

3. Run reader on the host 

     assign file name, file size, log#, and PATH 

4. Load writer module on the guest 

5. Run a SystemTap script on the guest 

     use ivring_write(), which is an API of IVRing 



A2. Performance Comparison Result 
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Lower is better 

By stopping notification, which causes VM-EXIT, load 

of IVRing gets close to that of ON-memory. 

⇒ Need to decide notification times as a future work. 





Legal statements 

• Linux is a registered trademark of Linus Torvalds. 

• UNIX is a registered trademark of The Open Group. 

• All other trademarks and copyrights are the property of 

their respective owners. 
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