
Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved

Low-Overhead Ring-Buffer of Kernel Tracing

 in a Virtualization System

1

Yoshihiro Yunomae
Linux Technology Center

Yokohama Research Lab.

Hitachi, Ltd.

Introducing

1. Purpose of a low-overhead ring-buffer

in a virtualization system

2. “IVRing”, a low-overhead ring-buffer

3. IVRing VS general methods

4. How do we implement a ring-buffer?

5. Summary and future work

In this presentation…

[1] To talk about new tracing buffer(1-3)

[2] To share problems of our implementation(4)

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
2

Introducing

1. Purpose of a low-overhead ring-buffer

in a virtualization system

2. “IVRing”, a low-overhead ring-buffer

3. IVRing VS general methods

4. How do we implement a ring-buffer?

5. Summary and future work

In this presentation…

[1] To talk about new tracing buffer

[2] To share problems of our implementation

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
3

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
4

Overview

In this presentation,

we focus on this part.

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
5

- Need to send trace data from guests to a host

 ⇒ One of methods is to use network I/O.

-To merge all trace data, a lot of data are sent.

 ⇒ High bandwidth, MAX12Mbps a guest, are required.
 [15000(pb/s) * 100(byte/pb) * 8(bit/byte) ~ 12Mbps]

 *pb: probes

- Using network I/O takes high overhead for application on guests.

Issue of Present Tracing
 in A Virtualization System

Host

Guest 1 Guest 2 Guest N ・・・

・・・

Goal and Methods

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
6

To minimize effects for applications on guests

⇒ Decrease overhead caused by high-bandwidth tracing

<Goal>

<Methods>

 (1) SSH & stdout ⇒ use network I/O

(2) NFS ⇒ use network I/O and disk I/O

(3) IVShmem

 - Zero-copy communication between a guest and a host

 ⇒ We don’t need to use network I/O and disk I/O.

We adopted the IVShmem method.

Introducing

1. Purpose of a low-overhead ring-buffer

in a virtualization system

2. “IVRing”, a low-overhead ring-buffer

3. IVRing VS general methods

4. How do we implement a ring-buffer?

5. Summary and future work

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
7

What is IVShmem?

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
8

Host

QEMU

Guest1

QEMU

Guest2

IVShmem IVShmem

driver driver

IVSS

POSIX

shmem

Mapping

Zero copy Zero copy

Notify by eventfd

• A virtual PCI RAM device originally for communication

between two guests

– ivshmem_server(IVSS) maps IVShmem POSIX shmem on a

host.

– Eventfd is available. ⇒notify to another guest

A Ring-Buffer on IVShmem

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
9

Host

QEMU

Guest

IVShmem

IVRing driver

IVSS

POSIX

shmem

IVTrace

A ring buffer is

constructed on IVShmem

Data path for trace data of a guest

Notify to IVTrace

Read trace data

• A ring-buffer is constructed on IVShmem as a data

path for trace data of a guest.

• IVTrace can read the data without memory copying.
– A driver notifies to IVTrace, and IVTrace statrs to read trace data.

• We use eventfd to notify to IVTrace.

IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
10

Host

QEMU

Guest

Writer

(SystemTap)

IVShmem

driver

IVSS

POSIX

shmem

IVTrace

Tne compornents of IVRing

IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
11

Host

QEMU

Guest

Writer

(SystemTap)

IVShmem

driver

Record

trace data

IVSS

POSIX

shmem

IVTrace

API for SystemTap

is implemented.

API for SystemTap is implemented on a ring-buffer.

IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
12

Host

QEMU

Guest

Writer

(SystemTap)

IVShmem

driver

IVSS

POSIX

shmem

IVTrace

When data volume exceed a

threshold, IVRing notifies

IVTrace of what trace data

are written. This notification

is operated via eventfd.

Notification using eventfd makes IVTrace operate.

IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
13

Host

QEMU

Guest

Writer

(SystemTap)

IVShmem

driver

IVSS

POSIX

shmem

IVTrace

Since ivshmem_server

maps IVShmem and

IVTrace to POSIX shared

memory, IVTrace can read

trace data without copying

memory.

Start to

read data

IVTrace reads a ring buffer without copying memory.

IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
14

Host

QEMU

Guest

Writer

(SystemTap)

IVShmem

driver

IVSS

POSIX

shmem

IVTrace

Output trace data

IVTrace outputs trace data of a guest.

Introducing

1. Purpose of a low-overhead ring-buffer

in a virtualization system

2. “IVRing”, a low-overhead ring-buffer

3. IVRing VS general methods

4. How do we implement a ring-buffer?

5. Summary and future work

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
15

Evaluation

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
16

We compared the performance of each method.

 ① IVRing: record trace data in IVRing

 ② NFS: output trace data on a NFS

 ③ SSH: output trace data using stdout via SSH

Host

Guest

 SystemTap

driver

IVTrace
SSH&stdout

SSH server

notify

NFS

①IVRing

②NFS ③SSH

Unixbench

(drhystone 2) kernel:3.3.4-3,

1VCPU,

Memory:2GB

Kernel:3.3.1-5,

Intel Xeon x5660@

2.80GHz(6core),

Memory:50GB

Performance Comparison Result1

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
17

[%]

V
C

P
U

 L
o

a
d

Lower is better

We compared 3 pattern based on the bare environment.

IVRing is much smaller load than NFS and SSH.

0

10

20

30

40

50

60

70
IVRing_notify

NFS

SSH

Introducing

1. Purpose of a low-overhead ring-buffer

in a virtualization system

2. “IVRing”, a low-overhead ring-buffer

3. IVRing VS general methods

4. How do we implement a ring-buffer?

5. Summary and future work

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
18

Present Problems - SMP

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
19

We implemented IVRing as a prototype,

so IVRing has the problem of scalability.

1. Multiple VCPU Support

 ・Spinlock ring-buffer is implemented to avoid competition.

 ・For scalability, a lockless ring-buffer is needed.

 ⇒ One VCPU requires one ring-buffer.

 ・Since IVShmem emulates a PCI device, the memory size is

limited to power of two.

 ⇒ Unusable memory region remains on IVShmem.

 c.f. 3VCPUs are assigned to a guest.

VCPU0 VCPU1 VCPU2

Not used
Memory region of

IVShmem

Present Problems – Live Migration

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
20

We implemented IVRing as a prototype,

so IVRing has the problem of scalability.

2. Live Migration Support

 - Functions of IVSS related to eventfd

 - I/F for Live Migration

 - Operation of IVTrace in Live Migration

 - Assigning of shared memory … etc

QEMU IVShmem

Host IVSS IVTrace

Another machine

× ×

Live Migration

Guest IVRing

Summary And Future Work

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
21

<Summary>

- We implemented IVRing, a low-overhead ring-

buffer, as a driver of IVShmem, and a reader of

IVRing

- IVRing implemented as a prototype has some

work to do.

<Future Work>

- To be useable in tracing system existing in-kernel

- To be useable in SMP environment

- To design for Live Migration

- To implement a new virtual device for tracing

A1. How to Use IVRing

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
22

1. Run IVShmem_server on a host

 assign an UNIX socket path(PATH), a shmem object,

and shmem size(SIZE)

2. Boot a QEMU and a guest with following options

 - device ivshmem,size=<SIZE>,chardev=ivshmem

 - chardev socket,path=<PATH>,id=ivshmem

3. Run reader on the host

 assign file name, file size, log#, and PATH

4. Load writer module on the guest

5. Run a SystemTap script on the guest

 use ivring_write(), which is an API of IVRing

A2. Performance Comparison Result

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
23

[%]

V
C

P
U

 L
o

a
d

0

2

4

6

8

10
ON-memory

IVRing

IVRing_notify

Lower is better

By stopping notification, which causes VM-EXIT, load

of IVRing gets close to that of ON-memory.

⇒ Need to decide notification times as a future work.

Legal statements

• Linux is a registered trademark of Linus Torvalds.

• UNIX is a registered trademark of The Open Group.

• All other trademarks and copyrights are the property of

their respective owners.

Copyright (c) 2012 Hitachi LTD., Yokohama Research Laboratory. All right reserved
25

