

Linux Powered Storage: Building a Storage Server with Linux

Ric Wheeler Architect & Senior Manager rwheeler@redhat.com June 6, 2012

Linux Based Systems are Everywhere

- Used as the base for commercial appliances
 - Enterprise class appliances
 - Consumer home appliances
 - Mobile devices
- Used under most cloud storage providers
 - Google, Facebook, Amazon
- Most common client for high performance computing
 - Lustre, Panasas

What Goes into a Linux Storage Server?

- Server components
 - Kernel NFS server
 - Samba (user space) server
 - Target mode support for block (iSCSI, FCoE)
- Local file systems
 - Ext4, XFS and Btrfs
- Clustered file systems
 - GFS2, OCFS2, etc
- Block layer
 - LVM, RAID code, remote replication
 - Support for new devices types (SSD's, etc).

Things We Get Right

Linux NFS Servers

- Support most of the 4.1 NFS specification
 - Client supports all of the mandatory features and pNFS
 - Server supports most of the mandatory features (not pNFS)
- Reasonably good performance for streaming and small file workloads
- Supports pretty much any transport
 - Ethernet, IB,
- Increased involvement in IETF
 - Direct community member engagement and traditional standards people also reach out to Linux developers

CIFS (aka Samba) Support

- Samba is robust and widely used
 - Has cluster support with CTDB
- In kernel CIFS client provides an alternative solution for Linux
 - Performance now approaches NFS performance
- Good community relations with Microsoft
 - Multiple plugfest like events per year
 - Regular engineering calls
- Large, multi-vendor development community
 - SambaXP conference each year just for Samba (and CIFS client) development

Ext3 File System

- Ext3 is was the most common file system in Linux
 - Most distributions historically used it as their default
 - Applications tuned to its specific behaviors (fsync...)
 - Familiar to most system administrators
- Ext3 challenges
 - File system repair (fsck) time can be extremely long
 - Limited scalability maximum file system size of 16TB
 - Can be significantly slower than other local file systems
 - direct/indirect, bitmaps, no delalloc ...

The Ext4 filesystem

- Ext4 has many compelling new features
 - Extent based allocation
 - Faster fsck time (up to 10x over ext3)
 - Delayed allocation, preallocation
 - Higher bandwidth
- Users still on EXT3 have an easy migration path
 - The same commands and utilities
- Large and active developer community that crosses multiple vendors

The XFS File System

- XFS is very robust and scalable
 - Very good performance for large storage configurations and large servers
 - Many years of use on large (> 16TB) storage
- XFS is the most common file system used in serious storage appliances
- Reasonable sized and active developer community that crosses a few vendors

The BTRFS File System

- BTRFS is the newest local file system
- More integrated approach to the storage stack
 - Has its own internal RAID and snapshot support
 - Does full data integrity checks for metadata and user data
 - Compression support
 - Can dynamically grow and shrink
- Ships in multiple enterprise and community distributions
- Large and active developer community that crosses multiple vendors

Active Maintenance and Development

- Since kernel v2.6.18 (~RHEL5):
 - Ext3: 556 commits, ~136 authors
 - Ext4: 1649 commits, ~213 authors
 - XFS: 1857 commits, ~136 authors
 - Btrfs: 2228 commits, ~139 authors
- Each file system has relatively few very active authors

New Features Tend to be Widely Supported

- Ext4, XFS, btrfs all have:
 - Delayed allocation
 - Per-file space preallocation
 - Hole punch (not on btrfs yet)
 - Trim / discard
 - Barrier (now flush/FUA) support
 - Defragmentation
- Ongoing work to unify the mount options across all file systems

LVM and Block Layer

- LVM and device mapper has had an activity spurt
 - New support for thin provisioned target
 - LVM can manage MD RAID devices
 - Native multipath increasingly used in high end accounts
- New open source drivers for PCI-e SSD cards
 - Micron driver is now upstream
 - Intel has been promoting the NVM express standard and driver
- Multiple ways to use SSD devices as a cache
 - Bcache, vendor specific, fscache, ???

Very Active Developer Community – LSF/MM 2012

What Do We Get Wrong?

Linux NFS Servers Problems

- Experience with NFS 4.0 and 4.1 still relatively new
 - Expect to get increases in user base
 - Will complete any lingering rough edges on server implementation
- Lacks support for clustered NFS servers
 - Running with a shared file system back end "mostly" works
 - Ongoing work to resolve lock recovery deficiencies
- Missing pNFS server code in upstream
 - Microsoft is likely to have production a pNFS file layout server before the upstream kernel

Samba Challenges

- Microsoft is moving rapidly to SMB3.0
 - Specification will be completely finalized once Windows8 server ships
 - Fixes performance issues
 - Good support for clustered servers
- Samba support for SMB2.1 mostly there
- SMB3.0 development
 - Samba plans for SMB3.0 support underway
 - CIFS client support limited to SMB1

Lack of Rich ACL Support

- Windows and Linux/UNIX are really different
 - Windows locks are mandatory
 - Linux locks are advisory
- Exporting the same file system via both NFS and CIFS leads to data corruption for lock users
- Rich ACL patch provides the missing support
 - Need the "rich ACL" patches to add support for Windows style semantics
 - Currently not actively being worked on

Ext3 Challenges

- Ext3 challenges
 - File system repair (fsck) time can be extremely long
 - Limited scalability maximum file system size of 16TB
- Major performance limitations
 - Can be significantly slower than other local file systems
 - Dwindling developer pool

Ext4 Challenges

- Ext4 challenges
 - Large device support (greater than 16TB) is relatively new
 - Has different behavior over system failure than ext3 users are used to
- Usability concerns
 - Lots of mount options and tuning parameters
 - Relies on complex and high powered tools to support LVM and RAID configurations

20

XFS Challenges

- XFS challenges
 - Not as well known by many customers and field support people
 - Until recently, had performance issues with meta-data intensive (create/unlink) workloads (fixed in upstream and recent enterprise releases like RHEL6.2)
- Similar usability concerns
 - Fair number of mount options and tuning parameters
 - Relies on complex and high powered tools to support LVM and RAID configurations

BTRFS Worries

- Repair tool still very young
- Ongoing worries with the hard bits of doing "copy on write" file systems
 - ENOSPC took a while (fixed now!)
 - Encryption yet to come
 - COW can fragment oft-written files
- Performance analysis and testing takes a back seat to XFS and ext4 work

All Things Management Related

- Linux systems have a tradition of relying on third party management tools
 - Lots of power tools for experts
 - Few tools appropriate for casual users
- Many ways to do one thing
 - Multiple RAID, SSD block caching layers

23

Ongoing Work Worth Following

NFS & Samba

- Advanced support for clustered storage very active
 - Lock recovery work being pushed upstream
 - Multiple (out of tree) parallel NFS servers
 - FedFS support
- All things to do with SMB3.0
- Combinations of NFS servers and Samba with other file systems
- NFS V4.2 adds new support for
 - Copy offload operation, FedFS and Labeled NFS
 - Most of this not yet implemented

25

Ext4 Scaling & Features

- Bigalloc (since kernel 3.2)
 - Workaround for bitmap scalability issues
 - Allocates multiples of 4k blocks at a time
 - Not true large filesystem blocks, but close?
- Inline Data planned(maybe?)
 - Store data inline in (larger) inodes
 - Mitigate bigalloc waste?
- Metadata Checksumming planned

XFS Scaling & Features

- "Delayed logging" is done
 - dramatically improved metadata performance
 - default since v2.6.39
 - Last[™] big performance issue
- Integrity work is next
 - CRCs on all metadata and log
 - FS UUID to detect misdirected writes
 - Transaction rollback in the face of errors
 - Background scrub

BTRFS Scaling & Features

- Scaling work here and there
- Mostly still fleshing out features
 - Checksumming was done early
 - RAID 5/6
 - Quotas
 - Dedup
 - Encryption

Block Level Convergence

- Active work on converging the SSD block cache layer
 - Proposal to get bcache from Google ported into device mapper
- Ongoing effort to reuse RAID implementations

Management Work

- Libstoragemgmt
 - Provides a library to do common block level operations on storage arrays
 - Full time developers and storage vendor participation
 - http://sourceforge.net/apps/trac/libstoragemgmt
- System Storage Manager
 - Btrfs like "ease of use" for xfs, ext4 on top of LVM
 - http://sourceforge.net/p/storagemanager/home/Home/

Resources & Questions

- Resources
 - Linux Weekly News: http://lwn.net/
 - Mailing lists like linux-scsi, linux-ide, linux-fsdevel, etc
- Storage & file system focused events
 - LSF workshop
 - Linux Foundation events
 - Linux Plumbers
- IRC
 - irc freenode.net
 - irc.oftc.net

