
© Hitachi, Ltd. 2012. All rights reserved. 

Yokohama Research Laboratory 

Hitachi, Ltd. 
 

Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com> 

Ftrace Event Tracer and 
Enhancement for Flight Recorder 
LinuxCon Japan 2012 



© Hitachi, Ltd. 2012. All rights reserved. 

Agenda 

• Ftrace event tracer 

• Event tracer as a flight recorder 

• Introducing 2 features 

– Snapshot & Multiple ring buffer 

– Why these are necessary 

– Interface 

• Future plan 

• Conclusion 

 

2 



© Hitachi, Ltd. 2012. All rights reserved. 

What is ftrace? 

• Ftrace is a framework for kernel tracing 

– Each “tracer” performs meaningful tracing 

– (Started as a function tracer, but it’s currently 

one of the tracers) 

 

hook mechanisms 

common components 

plugin tracers 

function irqsoff blk 

event 
tracer 

stack 
tracer 

ring buffer debugfs I/F 

tracepoint mcount kprobes 

… 

3 



© Hitachi, Ltd. 2012. All rights reserved. 

• Record events when kernel steps on 

“tracepoint” embedded in kernel 

What is ftrace event tracer? (a.k.a. “events”) 

- syscall 
- scheduling 
- irq entry 
- etc... 

 

gnome-panel-1716 [001] 11970.096184: sched_stat_runtime: comm=gnome-panel pid=1716 runtime=31888 [ns] 

  trace-cmd-3844 [002] 11970.096185: sched_stat_runtime: comm=trace-cmd pid=3844 runtime=230692 [ns] 

  trace-cmd-3844 [002] 11970.096188: sched_switch:       trace-cmd:3844 [120] S ==> swapper/2:0 [120] 

  ome-panel-1716 [001] 11970.096188: sched_switch:       gnome-panel:1716 [120] S ==> swapper/1:0 [120] 

         ls-3845 [003] 11970.096192: sched_wakeup:       migration/3:17 [0] success=1 CPU:003 

         ls-3845 [003] 11970.096193: sched_stat_runtime: comm=trace-cmd pid=3845 runtime=93127 [ns] 

         ls-3845 [003] 11970.096194: sched_switch:       trace-cmd:3845 [120] R ==> migration/3:17 [0] 

    gration/3-17 [003] 11970.096196: sched_stat_wait:    comm=trace-cmd pid=3845 delay=4131 [ns] 

..... 

trace 
point 

event 
handler 

ring 
buffer 

Event Data 

4 



© Hitachi, Ltd. 2012. All rights reserved. 

Available events 

• static events (tracepoint-based) 

– sched 

– kmem 

– irq (incl. softirq) 

– ext3, ext4, jbd, block 

– kvm, xen 

– syscall (enter/exit) 

– etc... 

• dynamic events 

– kprobes-based trace events (2.6.33~) 

5 

more than 360 events 
in 3.4.0-rc4 

(except syscalls) 



© Hitachi, Ltd. 2012. All rights reserved. 

Debugfs I/F 

Debugfs files for getting event data or settings 
tracing 

├── events 

│   ├── sched 

│   │   ├── enable 

│   .   ├── sched_switch 

│   .   .   ├── enable 

│ 

├── options 

│   ├── overwrite 

│   . 

│   . 

│ 

├── per_cpu 

│   ├── cpu0 

│   .   ├── trace 

│   .   ├── trace_pipe 

│ 

├── trace 

├── trace_pipe 

 

6 



© Hitachi, Ltd. 2012. All rights reserved. 

Debugfs I/F (Cont.) 

• events/event_class/event_name/enable 

– for enabling/disabling a specific event (or event class) 

 

 

 

• options/overwrite 

– for enabling/disabling overwrite mode of ring buffer 

– When the ring buffer is full, 

   1: oldest events are discarded (default) 

   0: newest events are discarded 

# echo 1 > events/kmem/kmalloc/enable 

7 

# echo 1 > events/kmem/enable 



© Hitachi, Ltd. 2012. All rights reserved. 

Debugfs I/F (Cont.) 

• trace 

– for reading a ring buffer (all per-cpu buffers) 

 

– Read doesn’t consume event data in the buffer 

 

• trace_pipe 

– similar to “trace” 

– Read consumes event data in the buffer 

 

• per_cpu/cpuX/trace 

– for reading each per-cpu ring buffer 

 

 

# cat trace 

8 



© Hitachi, Ltd. 2012. All rights reserved. 

Event tracer as a flight recorder 

Event tracer is available as a flight recorder 

• record event data at all times system is running 

• use overwrite mode buffer (= discard old events) 

• stop tracing on critical errors (panic), and we can 

analyze failure causes 

9 

kernel 

crash 
tool 

flight 
recorder 

panic 
kernel image 

dump trace 
data 

get trace data 

& analyze 



© Hitachi, Ltd. 2012. All rights reserved. 

Far more requirements 

Event tracer is useful as a flight recorder, but… 

• It’s difficult to handle non-critical errors (such as 

application’s errors or fail-over of bonding driver) 

– the system has to continue to run, so the system can’t 

stop trace 

– on the other hand, failure analysis is necessary to 

prevent the same errors 

 

• It’s difficult to satisfy above 2 requirements in 

current event tracer 

– (I’ll explain in detail later) 

 

10 



© Hitachi, Ltd. 2012. All rights reserved. 

Proposal of new features 

• In order to solve those problems, I propose 

following features 

– Snapshot 

– Multiple ring buffer 

11 



© Hitachi, Ltd. 2012. All rights reserved. 

Snapshot – Why is it necessary? 

• After a recoverable error happens, 

– in case we stop trace, next error events can’t be recorded 

– in case we continue trace, useful events for error analysis 

may be overwritten by new events 

 

 

 

 

 
 

• It’s necessary to save ring buffer on errors while 

enabling trace -> Snapshot! 

12 

new 
events 

old events 

over-
write... 

useful events for analysis 



© Hitachi, Ltd. 2012. All rights reserved. 

Snapshot – What is it? 

• Swapping a buffer for a spare buffer 

• Snapshot buffer can be read from userspace 

• We can continue trace across the swapping 

 

 

 

 

 

 

• Fortunately, swapping mechanism already exists 

– irqsoff and wakeup tracers are using it 

Spare 
buffer 

event 
handler 

3. continue trace 

1.error 

2.swap 

13 

Snapshot 
buffer 



© Hitachi, Ltd. 2012. All rights reserved. 

Snapshot – Interface 

• Errors detected by application can be trigger 

• I propose following 2 debugfs files 

“snapshot_enabled” 

• enable snapshot (prepare a spare buffer) 

 

• disable snapshot (shrink a spare buffer) 

 
 

“snapshot” 

• take a snapshot 

 

• read a snapshot 

 # cat snapshot 

# echo 1 > snapshot_enabled 

# echo 1 > snapshot 

# echo 0 > snapshot_enabled 

14 



© Hitachi, Ltd. 2012. All rights reserved. 

Snapshot – Remaining problem 

• Errors detected only by kernel 

– e.g. Exceptions, fail-over of bonding driver 

– How should we catch those errors? 

• add exception trace events and use them as trigger? 

• or other way? 

15 



© Hitachi, Ltd. 2012. All rights reserved. 

Snapshot – Other use case 

• Snapshot is useful in virtualization(KVM) 

– Host OS’s trace data is useful for failure analysis of VMs 

– Host OS can’t be stopped even in a VM’s crash 

 

16 

Host OS (Linux) 

VM-1 

Spare 
Buffer 

VM-2 

crash 

Buffer swap 

ftrace 

VM-3 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple ring buffer – Why is it necessary? 

• Current event tracer can record events to only 

one ring buffer 

• When an error event happens, the error event 

could be overwritten by other high-freq events 

– Error events are so rare and important that even only 

those events should be preserved 

– Snapshot is useful for one error, but can’t deal with 

multiple errors 

 

• It’s necessary to protect error events from high-

freq events -> Multiple ring buffer! 

 

 
17 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple ring buffer – What is it? 

• A mechanism to increase the number of ring 

buffers on demand 

• We can separate (or replicate) important events 

into sub-buffer(s) 

 

 

 

 

 

• Important and rare events leave in sub-buffer 

over a long time 

18 

errors 

main 
buffer 

sub-buffer 

syscall, irq, 
blkio, ... 

high-freq 

events 

rare & important 

events 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple trace buffer – Interface 

• Steven Rostedt told me his idea (thanks!) 

– https://lkml.org/lkml/2011/12/20/212 

• create_buffer 

– a (debugfs) file that you echo a name into to create a 

new (sub-)buffer 

– then a directory with that name will appear 

19 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple trace buffer – Interface (Cont.) 

20 

tracing 

sub_buffers 

create foobar 

events 

sched kmem ... 

trace options 

# echo foobar > tracing/sub_buffers/create 

 

New directory “foobar” 

appears 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple trace buffer – Interface (Cont.) 

21 

tracing 

sub_buffers 

create foobar 

events 

sched kmem ... 

trace options 

# ls tracing/sub_buffers/foobar 

Same files as the tracing/* 

appear 

(except few things) 

events 

sched kmem ... 

trace options 



© Hitachi, Ltd. 2012. All rights reserved. 

Future plans 

• I will implement proposed features and submit 

patches to LKML 

• I’d like to discuss how exceptions should be 

treated in snapshot. 

 

22 



© Hitachi, Ltd. 2012. All rights reserved. 

Conclusion 

• Ftrace event tracer is useful as a flight recorder 

• For far more requirements, I proposed following 

features: 

– Snapshot I/F 

– Multiple ring buffer 

• These are useful to preserve important events 

• I’d like to discuss and solve remaining issues 

– Errors detected only in kernel 

23 



© Hitachi, Ltd. 2012. All rights reserved. 

Trademarks 

• Linux is a trademark of Linus Torvalds in the 

United States, other countries, or both. 

• Other company, product, or service names may 

be trademarks or service marks of others. 

24 



© Hitachi, Ltd. 2012. All rights reserved. 



© Hitachi, Ltd. 2012. All rights reserved. 

Multiple trace buffer – Implementation 

• LTTng 2.0 have already implemented multiple buffer 

using “tracepoint” 

• Can we implement in event tracer in the same way? 

1. create buffer 

2. add a tracepoint entry corresponding to the buffer 

• It’s necessary for all enabled tracepoints 

tracepoint 

*func 
buffer 

X 

buffer 
Y 

data=X 
event 

handler 
*func 

data=Y 

tracepoint 
entries 

func(data); 

26 


