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Who Am I?

● Kernel Tech Lead @ Linaro
● Mostly meetings, slides, presentations

● Before that, I did write code:
● 12 years kernel experience

● Worked on storage drivers at Intel
● Developed and maintained IXP* Xscale NPU ports
● Kernel maintainer at MontaVista for several years

● Reviewed all patches for distro kernel
● Reviewed thousands of lines of vendor BSP code

● OLPC kernel maintainer for about 1.5 years
 



Problem Statement

● Problem: 
● Every ARM platform requires a different kernel

● Even new revision of the same platform



Why is this a Problem? (1)

● ARM-Based Servers (“Enterprise”)
● Vastly different use model from mobile

● Purchase HW + deploy anywhere
● HW often purchased separately from SW
● Want to run new versions of SW on older HW
● Distros have spoken:

● Must have one kernel image to make this feasible:
● Reduce test matrix
● Provide a run-anywhere install image

● Cloud/Hyperscale Computing:
● Servers with thousands of nodes
● Heterogenous compute environment

● Will have mix of old and new hardware
● Need simplified deployment and management model



Why is this a problem? (2) 

● Similar problems everywhere:
● Consumer Electronics

● Increased test matrix
● Updating kernel for 

● Mobile:
● Every new phone rev needs kernel changes

● Even just trivial changes (re-route IRQS for example)
● “Traditional” Embedded

●



Solution Statement

● One kernel that boots on any ARM platform!



How did we get here?

● ARM is a very diverse ecosystem
● Both a great benefit and a challenge

● Allows for innovation and differentiation
● Vendors with slightly different IP blocks for same problems
● Code ends up being duplicated due to closed-door development

● Maintainer overload
● Many vendor communities pushing code upstream
● Too much for Russell King to handle
● Code start getting pushed directly to Linus

● (I might have been the first one to do this...sorry for the mess!)
● Nobody really actively reviewing and driving direction



What's Being Done About This

● Multi-faceted problem
● Header Cleanups and Consolidation
● Driver Subsystem Consolidation
● Device Tree
● Active Maintenance of ARM-SOC Tree

● Each solves independent set of issues
● All together lead towards our final goal



The ARM Kernel Tree

● ARM tree layout
● arch/arm/mach-*

● Different machine types
● arch/arm/mach-*/include/mach/*.h

● Contains machine/SoC specific headers
● Maps to <mach/*.h> at build time

● arch/arm/include/asm/*.h
● Maps to <asm/*.h>



Some Numbers
(From 3.0, when this effort started)

● 64 mach-* directories under arch/arm/
● Each with separate set of header file
● Lots of overlapping symbols

● system.h, io.h, timex.h, hardware.h, vmalloc.h, memory.h, irqs.h, 
gpio.h, etc

● Goal is to get rid of many of these
● Make them ARM generic
● Move platform specific symbols to non-generic named headers

● 577 occurrences of “#include <mach/*>” in drivers/
● Again, lots of overlap
● Creates more maintenance burden
● Ultimate goal: Move all driver-specific symbols next to drivers

● arch/arm/mach-foo/include/mach/foo-gpio.h →
drivers/gpio/foo-gpio.h (or directly into foo-gpio.c)



Header Cleanups
● system.h

● Deleted and functions moved to different locations
● io.h

● Many macros made generic (override with 
CONFIG_NEED_MACH_IO_H)

● vmalloc.h 
● Deleted

● timex.h 
● Work in progress (see next slide)

● irq.s
● Needed for NR_IRQS
● Requires moving to sparse IRQ
● Used by drivers that hardcode this...



Why This Is Difficult
(i.e. <mach/timex.h>: Kernel Archaeology 101)

● timex.h defines CLOCK_TICK_RATE
● Used in legacy code to manage system tick timer

● Value is pretty much meaningless in modern systems
● Should be easy to delete...

● Not so much...
● CLOCK_TICK_RATE drives LATCH

● LATCH is magic to “latch” into timer trigger register
● LATCH is used in odd places in the kernel

● Old joystick driver
● x86 timer code
● Audio

● It's required for global macros....



Why This is Difficult (2)

● Macros are somewhat magical, understood by few
● Maintainers don't agree if we can change them

/* LATCH is used in the interval timer and ftape setup. */
#define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ)  /* For divider */

/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
 * improve accuracy by shifting LSH bits, hence calculating:
 *     (NOM << LSH) / DEN
 * This however means trouble for large NOM, because (NOM << LSH) may no
 * longer fit in 32 bits. The following way of calculating this gives us
 * some slack, under the following conditions:
 *    (NOM / DEN) fits in (32  LSH) bits.
 *    (NOM % DEN) fits in (32  LSH) bits.
 */
#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))

/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))

/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))

/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)

/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and  */
/* a value TUSEC for TICK_USEC (can be set bij adjtimex)                */
#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))



Why This is Difficult (3)

● Changes we are making require coordination
● Multiple subsystems
● Undocumented dependencies
● Multiple maintainers

● With differing POVs/requirements



Driver Cleanup/Consolidation

● Many different implementations of same code
● Differing APIs
● Overlapping symbols
● Code bloat
● Some Examples:

● Pinmux
● Clock Management 



struct clk

● The epitome of code duplication and fragmentation
● include/linux/clk.h added in 2006 (2.16!!)

● Declared “struct clk;” 
● Declared various functions that act on it
● Did not define the structure, left to each user

● 2011: 27 different struct clk definitions in arch/arm!
● Each with different set of semantics

● Has taken 2+ years to develop a common definition
● Still needs some discussion on certain areas
● See documentation/clk.txt



Pinmux

● Subsystem to manage pins on modern SOCs
● Assign pins to different on-chip IP
● Run-time re-assignment based on device use 
● Manage pull up and pull down states
● 6+ months of work to complete this

● Still discussing some areas...



Device Tree

● Legacy ARM platforms had static device tables
● Requires rebuild for simple changes:

● IRQ line change
● Memory map move

● Requires new static tables for new board even if no 
other driver changes

● Device Tree moves much of this data to be 
probed at boot time instead.



Device Tree Based Workflow

DTS File DTC DTB A
New Board A
Specification

New Board C

Existing Kernel

DTS File DTC DTB B
New Board B
Specification

DTS File DTC DTB CNew Board A
Specification

New Board B New Board A



DT Code Demo

● Origin Board, based on Exynos Platform



Where We Are Now

● Work done by many hands
● ARM SOC Tree has been of great help

● git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc.git
● See Arnd's talk (http://goo.gl/CBKaC)

● Active involvement by Linaro, vendors, and community
● Arnd has 4 linaro platforms building

● ARM Versatile Express boots!

http://goo.gl/CBKaC


What's Left To Do

● USB driver consolidation
● Can currently only build one USB host per type

● Finish DT conversion
● Lots of drivers still left
● Lots of dts files to be written

● Real cleanup of driver #include madness
● DEBUG_LL & early_console



A Reality Check

● Several zImages to rule them all...
● ARM v6/7 bit non-LPAE
● ARM v6/7 bit LPAE
● ARM v5
● ARM v8 (down the road...)

● This is still better than today!



How you Can Help

● Convert your platforms to new common bits:
● pinmux, sparse irq, generic gpio, device tree, etc 
● Get your code upstream!

● Life will be much harder otherwise in this new world
● Help out with one of the areas from previous slide
● Grab arm-soc tree
● Rebase your code to this
● Add your platform to arch/arm/mach-multi and test

● Send fixes to Arnd and linux-arm-kernel lists



Questions? Comments?
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