Linux Memory Fragmentation: Observation and Analysis on Smart Phones

Pintu Kumar

pintu.k@samsung.com

CONTENT

- Introduction
- **OMEASURING THE MEMORY FRAGMENTATION LEVEL**
- **OMEMORY Fragmentation Analysis**
- **Observations**
- **Experimentation Results**
- **Some References**

INTRODUCTION

• What is Memory Fragmentation ?

When a Linux device has been running continuously over a time without reboot and keeps allocating and de-allocating pages, the pages become fragmented. The bigger contiguous free pages become zero and free pages are only available in many smaller pages which are not contiguous. Thus even if we have lots of free memory in smaller units, the page allocation in kernel may fail.

<u>This typical problem is called "External Memory</u> <u>Fragmentation" here after referred to as memory</u> <u>fragmentation.</u>

INTRODUCTION

• Effect of Memory Fragmentation :

Memory Fragmentation can cause a system to lose its ability to launch new process.

Memory fragmentation becomes more of an issue in embedded devices and Linux mobiles.

DRAM + Flash , Swapless system

Memory fragmentation can become more critical with high multimedia and graphics activities which requires contiguous higher-order pages.

MEASURING FRAGMENTATION LEVEL

- It is important to measure fragmentation level across each zones and for each higher-order allocation in kernel.
- We believe by measuring fragmentation level during page allocation we can control higher-order allocation failure in kernel.
- We developed kernel utility to measure fragmentation level during runtime without enabling memory COMPACTION.

MEASURING FRAGMENTATION LEVEL

• Formula to measure fragmentation level in percentage :

$$FragLevel(\%) = \frac{TotalFreePages - \sum_{i=j}^{N} (2^{i}.k_{i})}{TotalFreePages} X100$$

TotalFreePages	= Total number of free pages in each Node
Ν	= MAX_ORDER - 1 The highest order of allocation
j	= the desired order requested
i	= page order 🗲 0 to N
Ki	= Number of free pages in ith order block

(The above formula derived from Mel Gorman's paper : "Measuring the Impact of the Linux Memory Manager")

MEASURING FRAGMENTATION LEVEL

• SAMPLE OUTPUT : cat /proc/fraglevelinfo

Lets say a NORMAL zone looks like this at some point of time

		2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
Node 0, zone	Normal	3	20	104	13	13	1	1	1	0	0	0

Now lets apply our formula to measure fragmentation level for order 2^5.

Here , TotalFreePages = (3x1 + 20x2 + 104x4 + 13x8 + 13x16 + 1x32 + 1x64 + 1x127) = 994

Therefore; % Fragmentation = $(994 - [(2^5)^{1} + (2^6)^{1} + (2^7)^{1} + (2^8)^{0} + (2^9)^{0} + (2^10)^{0}])^{1} 100) / 994$ % Fragmentation = $(994 - [32 + 64 + 128]) / 994 = ((994 - 224)^{10}) / 994$ % Fragmentation = $(770^{1} 100) / 994 = 77.46^{10} \rightarrow 77^{10}$ (round off)

MEMORY FRAGMENTATION ANALYSIS

- We developed a sample kernel module and test utility to perform higher-order allocation and doing memory fragmentation analysis before and after the allocation.
- Test utility developed and tested for (K32, K36)
- Test Utility will be shared on LTP after further improvements.

JUST AFTER PHONE BOOT-UP (Linux Kernel 2.6.36)

/opt/ho	me/root #	cat /	/proc/	fragl	evel	info					
Node:0, Order 0 1 2 3 4 5 6 7 8 9 10 TotalFr TotalRe Overall	FreePages 2 2 5 3 4 2 6 5 1 1 2 6 5 1 1 102 eePages: 10 vablePages claimablePages Fragmenta	06414 : 103 ages:	/ableP 0 1 1 1 1 1 0 0 101 8678 731 0%	ages	Rec	laima	blePag 1 2 2 1 0 1 0 1 0	ges	Fragm	entat 0% 0% 0% 0% 0% 0% 1% 1%	ion[%]
Node:0, Order 0 1 2 3 4 5 6 7 8 9 10 TotalFr TotalMo TotalRe Overall	Zone:High FreePages 15 15 11 10 10 11 4 8 1 1 55 eePages: 5 vablePages claimablePages Fragmenta	9049 560 ages:	/ableP 5 2 5 6 2 5 1 0 54 5 5 4 5 5 1 5 4 5 5 4 5 5 1 8 5 4 5 5 1 8 5 4 5 5 1 8 5 5 5 1 8 5 5 5 5 5 5 5 5 5 5 5	ages	Rec	laima	blePag 0 0 0 0 0 0 0 0 0 0	ges	Fragm	entat 0% 0% 0% 0% 1% 1% 3% 3% 4%	ion[%]
/opt/home/r Node 0, zor Node 0, zor	root # cat /pro ne Normal ne HighMem	2 2 15	lyinfo 2 15	5 11	3 10	4 10	2 11	6 4	5 8	1 1	1 102 1 55

AFTER RUNNING VARIOUS APPLICATIONS (Browser, WiFi Video Share, Camera,

Voice Recorder, eBooks, Few Games) for ½ an Hour and then killing All)

/opt/pi	ntu # cat ,	/proc/fr	agleve	linfo							
Node:0,	Zone:Norma	al 🚬									
order	FreePages	Movabl	ePages	Rec	laim	iab l ePa	ages	Frag	gmenta	ation	[%]
0	1139	8	00			1			0%		
1	795	5	40			7			1%		
2	500	3	45			2			3%		
3	315	2	29			1			5%		
4	237	1	68			0			8%		
5	114	7	0			1			139	6	
6	67	2	6			1			179	6	
7	25	1	5			1			2 39	6	
8	35	1	0			1			269	6	
9	16	9				0			379	6	
10	42	3	6			0			479	6	
TotalFr	eePages: 82	2333									
TotalMo	vablēPages	: 57636									
TotalRe	claimabĺePa	ages : 51	1								
Overall	Fragmentat	tion 16	%								
	2										
Node:0,	Zone:HighM	1em									
order	FreePagés	Movab1	ePages	Rec	:laim	iablePa	ages	Frac	gmenta	ation	[%]
0	2281	1	994			0	-	_	Ó 0%		
1	1382	1	140			0			9%		
2	861	7	81			0			219	6	
3	474	4	30			ō			369	6	
4	226	1	93			Ō			529	6	
5	106	8	5			ō			679	6	
ő	38	ž	6			ŏ			829	Ř	
ž	8	6				ŏ			929	Ř	
8	ž	ŏ				ŏ			969	ž.	
ă	õ	ŏ				ŏ			10	<u>0%</u>	
10	ă	ă				ŏ			100	0%	
TotalEr	0000005 23	2512				0			TO	0/0	
TotalMo	vablopages. 2:	10078									
TotalNo	claimablen	. 190/8									
ovenall	ClaimablePa	ages: 0	~								
overall	Fragmenca	1011 39	~								
/opt/pintu	# cat /proc/bud	ldvinto									
Nodo 0 zon	Normal 11	20 705	500	215	222	11/	67	25	25	16	40
Node 0, Zor	ie Norman II	28 (8)	200	27.2	257	114	07	25	20	10	42
Node 0. zon	ne HighMem 22	250 1382	861	474	226	106	38	8	3	0	0
								-	-	•	
			Lin	ux Con la	apan 201	2					-11
1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

ALLOCATION SUCCESS CASE – (Kernel 2.6.32)

/opt/pintu # ls -l /dev/pinchar

crw----- 1 root root 10, 49 Jan 12 13:21 /dev/pinchar

/opt/pintu # ./app_pinchar.bin

		2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
Node 0, zone	DMA	3	1	1	1	0	0	0	1	0	0	0
Node 1, zone	DMA	197	129	0	0	0	0	0	0	0	0	0
Node 2, zone	DMA	30	12	14	4	5	8	6	4	2	1	27

Enter the page order(in power of 2) :	16	2^4 order block	16 x 4K = 64K bytes	
Enter the number of such block :	5			

State After The Allocation Request Is Successful

		2 ⁰	2 ¹	2 ²	2 ³	<mark>2</mark> ⁴	<mark>2</mark> ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
Node 0, zone	DMA	3	1	1	1	0	0	0	1	0	0	0
Node 1, zone	DMA	169	143	1	0	0	0	0	0	0	0	0
Node 2, zone	DMA	19	12	12	5	2	7	6	4	2	1	27

Explanation :

5 of 2^4 order blocks were requested. These request could only be satisfied by Node 2, Thus Node 2 were selected for allocation. But in Node 2 also, out of 5 (2^4) blocks only 3 could be allocated. Then the other 2 were allocated by splitting the 2^5 order blocks. $5 \times 2^4 = [3 \times 2^4 + (1 \times 2^5)] = [3 \times 2^4 + (1 \times 2 \times 2^4)] = [5 \times 2^4]$

ALLOCATION FAILURE CASE – (Kernel 2.6.32)

Buddy State Before Allocation

		2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
Node 0, zone	DMA	1	0	0	0	1	0	2	0	0	0	0
Node 1, zone	DMA	247	181	15	1	1	2	0	9	10	8	11
Node 2, zone	DMA	19	19	11	3	6	3	4	2	2	2	29

Enter the page order(in power of 2):10242^10 order block1024 x 4K = 4096K bytesEnter the number of such block :50(this is the highest order)

ERROR : ioctl - PINCHAR_ALLOC - Failed, after block num = 48 !!!

Explanation : As you can see the allocation request of 1024 x 50 pages is failed after 47 such allocation. But still there were enough free pages available in lower order.

2⁰ **2**¹ 2² **2**³ **2**⁴ **2**⁵ **2**⁶ **2**⁷ 2⁸ 2⁹ 2¹⁰ Node 0, zone DMA 1 0 18 9 0 0 0 0 0 0 0 Node 1, zone DMA 88 77 36 25 25 43 23 19 18 11 20 5 2 3 3 2 2 Node 2, zone DMA 18 14 10 4 29

Buddy State After Allocation FAILED And Other Allocation Freed

Explanation : The interesting think to note here is that after requested allocation was failed, kernel tried to arrange that many blocks in desired order so that next similar request can be succeeded.

Observations

- _alloc_pages_nodemask : This is the heart of all memory allocation in kernel.
- We measure fragmentation level for each higher order here.
- Track higher-order allocation during high fragmentation. Anything above PAGE_ALLOC_COSTLY_ORDER(==3) is considered higher-order allocation in kernel and becomes critical.

Observations

- Direct reclaim does some progress but still could not return any pages during first run.
- Similarly direct compact is helpful but only if pages are movable.
- According to our observation: direct_reclaim leaves many pages MOVABLE.
- Thus we think first direct_reclaim and then direct_compact may be more useful under certain conditions. We will see these results in next slides.
- According to our experiment, a minimum of 2 sec delay is required after direct_reclaim to succeed subsequent allocation.

Experiments Results

- We performed some experiments with higher-order allocation and got some results.
- We found that whenever we run any application "Xorg" perform 4 or 8 order allocation.
- The browser always requires order-4 allocation.

/opt/pintu # ps ax | grep browser 7159 ? Ssl 0:03 /opt/apps/com.samsung.browser/bin/browser

[3830.215613] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!! [3830.227243] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 8, Fragmentation Level = 29% [3830.235645] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!! [3830.244575] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13% (Around 10 times)

[3831.355884] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!! [3831.364649] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13% [3831.373484] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!! [3831.383134] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13% (Around 26 times)

RESULT #1 - (With Kernel 2.6.32)

		2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	<mark>2</mark> ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰
Node 0, zone	DMA	685	104	1	1	0	0	0	1	0	0	0
Node 1, zone	DMA	33	19	31	18	9	1	1	0	0	0	0
Node 2, zone	DMA	11	50	9	5	5	3	2	1	0	0	0

Enter the page order(in power of 2) :10242^10 order block1024 x 4K = 4096K bytesEnter the number of such block :10(this is the highest order)

Explanation : As you can see here, due to 100% fragmentation, page allocation request was failing, even after direct reclaim (slow path). But after a delay and retrying allocation request again, all subsequent allocation were successful. This delay indicates something needs to be done after direct reclaim. Maybe wait till lazy buddy allocator arranges free pages in the subsequent free areas.

RESULT #2 – (Kernel 2.6.36) [Without COMPACTION]

Initial Fragmentation Level

/opt/pin	ntu # cat /proc,	/fraglevelin	fo ; cat ,	/proc/buc	ldyinfo					
Nodelo, Order 0 1 2 3 4 5 6 7 8 9 10 TotalFre TotalMov TotalRec Overall	FreePages 271 171 143 100 154 79 26 7 10 0 1 eePages: 13117 vablePages: 575 claimablePages: Fragmentation:	MovablePag 25 5 1 1 2 1 3 0 0 0 0 2756 39%	ges Re	claimable 0 1 18 61 27 6 3 0 0 0	Pages		Fragment	ation[% 0% 2% 4% 9% 15% 33% 53% 65% 72% 92% 92%	6]	
Node:0, Order 0 1 2 3 4 5 6 7 8 9 10 TotalFre TotalMov TotalRec Overall	Zone:HighMem FreePages 6850 8826 261 9 5 0 0 0 0 0 0 0 0 0 eePages: 25698 vablePages: 2555 claimablePages: Fragmentation:	MovablePa 6837 8803 255 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ges Re	claimable 0 0 0 0 0 0 0 0 0 0 0	Pages		Fragment 1 1 1 1 1	ation[% 0% 26% 95% 99% 00% 00% 00% 00% 00% 00%	6]	
Node 0, Node 0,	zone Normal zone HighMem	271 172 6850 882	1 143 6 261	100 9	154 5	79 0	26 0	7 0	10 0	0

1 0

After Higher order allocation request

./app_pinchar.bin 1024 25

[17949.789934] [HIGHERORDER DEBUG]: alloc pages nodemask is called by process <PID = 27713, NAME = app pinchar.bin> !!! [17949.801633] [HIGHERORDER DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 92% [17949.811073] [HIGHERORDER DEBUG] : alloc pages nodemask : Allocation going via - slowpath !!! [17949.831793] [HIGHERORDER DEBUG] : did some progress = 151 [17949.844090] [HIGHERORDER_DEBUG] : NO pages......even after direct reclaim [17949.859104] app pinchar.bin: page allocation failure. order:10, mode:0x40d0 [17951.879156] [HIGHERORDER_DEBUG] : Trying - Final time !!!!!!!!! [17951.893248] <PINCHAR> : PINCHAR ALLOCATE - Success(index = 0) [17960.189583] [HIGHERORDER DEBUG] : alloc pages nodemask is called by process <PID = 27713, NAME = app pinchar.bin> !!! [17960.201128] [HIGHERORDER DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 98% [17960.210269] [HIGHERORDER DEBUG] : alloc pages nodemask : Allocation going via - slowpath !!! [17960.335044] [HIGHERORDER DEBUG] : did some progress = 887 [17960.339918] [HIGHERORDER DEBUG] : Got some pages after direct reclaim [17960.368939] <PINCHAR> : PINCHAR ALLOCATE - Success(index = 4) ! [17964.518845] [HIGHERORDER DEBUG]: alloc pages nodemask is called by process <PID = 27713, NAME = app pinchar.bin> !!! [17964.530629] [HIGHERORDER DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 83% [17964.547138] <PINCHAR> : PINCHAR ALLOCATE - Success(index = 8) ! [17965.552976] [HIGHERORDER DEBUG]: alloc pages nodemask is called by process <PID = 27713, NAME = app pinchar.bin> !!! [17965.564319] [HIGHERORDER DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 84% [17965.580823] <PINCHAR> : PINCHAR ALLOCATE - Success(index = 9) ! [17966.586440] [HIGHERORDER DEBUG] : alloc pages nodemask is called by process <PID = 27713, NAME = app pinchar.bin> !!! [17966.597175] [HIGHERORDER DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 85% [17966.613424] <PINCHAR> : PINCHAR ALLOCATE - Success(index = 10) !

Allocation failed directly during the first attempt itself even after direct reclaim. But after introducing a delay and retrying, all further allocation succeeded. May be Kswapd takes sometime to clear up dirty pages and buddy adding it back to free area. ¹⁹ Linux Con Japan 2012

Final Fragmentation Level

/opt/pi	ntu # Zone:	cat /proc, Normal	/frag]	evelinfo	; cat ,	/proc/bu	ddyinfo					
Order 0 1 2 3 4 5 6 7 8 9 10 TotalFr TotalMo TotalRe Overall	Free 86 86 86 56 35 22 9 7 1 2 eePage vableP claima Fragm	Pages 4 3 8 9 6 8 2 0 8 3 6 5: 110818 ages: 7019 blePages: entation:	91 4735 27%	ablePages 465 583 626 493 434 280 184 83 67 13 0	Re	claimable 135 118 107 74 41 28 16 6 0 0 0	ePages		Fragmen	tation[9 0% 2% 5% 10% 18% 28% 41% 51% 69% 75%	6]	
Node:0, Order 0 1 2 3 4 5 6 7 8 9 10 TotalFr TotalFr TotalRe Overall	Zone: Free 457 823 478 176 36 3 3 eePage vablep claima Fragm	HighMem Pages 9 9 0 2 5 4 0 0 0 5 5 4 0 0 0 5 5 4 0 0 0 5 5 4 0 0 0 5 5 4 0 0 0 5 5 4 0 0 0 0	Mov 4 4 1 1 8 3 0 71%	ablePages 523 202 756 734 355 32 4 0 0 0	Re	claimable 0 0 0 0 0 0 0 0 0 0 0	ePages		Fragmen	tation[9 0% 7% 34% 65% 88% 97% 99% 100% 100% 100%	6]	
Node 0, Node 0,	zone zone	Normal HighMem	864 4579	862 8239	868 4789	659 1760	566 362	358 35	222 4	90 0	78 0	13 0

Here you can see lots of movable pages after lots of direct reclaim. Thus direct compact might be helpful after direct reclaim and not before.

26 0

EXPERIMENTATION DATA

Page Order	Block Used	Available Blocks	No of Blocks Requested	Current Fragmentation Level	No of Blocks Allocated	Pass Rate
10	1024	0	20	100%	20	100%
9	512	11	20	94%	20	100%
8	256	4	20	90%	20	100%
8	256	0	50	100%	50	100%
9	512	1	30	97%	30	100%
10	1024	28	40	10%	40	100%
10	1024	0	50	100%	46	92%

DATA COLLECTED ON :

Kernel 2.6.32 [DRAM 512MB, no swap]

SUMMARY

- Measuring fragmentation level and tracking higherorder is important at least for low memory notifier.
- It was observed that allocation takes slowpath whenever fragmentation level is above 90%.
- The delay introduced here is only for experimental purpose.
 - Delay could be because, dirty pages has to be written to the disk before it is marked freed.
 - May be the real thing could be to wait till lazy buddy allocator rearranges the free pages.
 - > This is valid only for GFP_KERNEL where a sleep is allowed.

- Can we introduce something like system wide fragmentation level across all zones???
 - > As shown in the experimental data in previous slides
 - Auto recovery if fragmentation crosses > 90%
- From kernel2.6.35 COMPACTION contains its own fragmentation level measurement.
 - /sys/kernel/debug/extfrag/unusable_index
 - > But this requires COMPACTION and HUGETLB to be enabled.
 - > May be we can utilize this from kernel2.6.35 onwards.
 - Difficult to back port compaction to lower kernel version.
 - Mostly helpful for user space allocation where pages are movable.

 Reserving memory during boot time using CMA can reduce fragmentation to some extent.

> But good only if we have bigger RAM.

- But sometimes CMA region itself suffers from memory fragmentation and may again requires help of compaction to move pages.
 - May be we can introduce a new ZONE such as CMA_ZONE for all CMA memory allocation.
- Is rebooting the only option left?. Can we do something else?
- Further investigation is in progress.

• <u>Memory fragmentation is like a decease which</u> <u>can only be prevented and cannot be cured.</u>

• <u>Therefore extra care needs to be taken while</u> <u>designing your system itself.</u>

Some References

- 1. Wikipedia, "Buddy Memory Allocation". http://en.wikipedia.org/wiki/Buddy memory allocation.
- 2. Jonathan Corbet. (2010), "Memory Compaction" http://lwn.net/Articles/368869/
- 3. Lifting The Earth (2011) "Linux Page Allocation Failure", <u>http://www.linuxsmiths.com/blog/</u>.
- 4. Mark S. Johnstone and Paul R. Wilson (1997), "The Memory Fragmentation Problem Solved?"
- 5. Mel Gorman and Patrick Healy (2005) "Measuring the Impact of the Linux Memory Manager" http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
- 6. Corbet (2004), "Kswapd and higher-order allocations" <u>http://lwn.net/Articles/101230/</u>

Thank You !!!