
0%
1%

2%

5% 7%

10%

11%

17%

30%

56%

70%

Fragmentation Level

0

1

2

3

4

5

6

7

8

9

10

Linux Memory Fragmentation:
Observation and Analysis

on Smart Phones

Pintu Kumar
pintu.k@samsung.com

 Linux Con Japan 2012 1

mailto:Pintu.k@samsung.com

CONTENT

Introduction

Measuring the memory fragmentation level

Memory Fragmentation Analysis

Observations

Experimentation Results

Summary

Some References

2 Linux Con Japan 2012

INTRODUCTION

• What is Memory Fragmentation ?
When a Linux device has been running continuously
over a time without reboot and keeps allocating and
de-allocating pages, the pages become fragmented. The
bigger contiguous free pages become zero and free
pages are only available in many smaller pages which
are not contiguous. Thus even if we have lots of free
memory in smaller units, the page allocation in kernel
may fail.
This typical problem is called “External Memory
Fragmentation” here after referred to as memory
fragmentation.

3 Linux Con Japan 2012

• Effect of Memory Fragmentation :

Memory Fragmentation can cause a system to
lose its ability to launch new process.

Memory fragmentation becomes more of an
issue in embedded devices and Linux mobiles.

 DRAM + Flash , Swapless system

Memory fragmentation can become more critical
with high multimedia and graphics activities
which requires contiguous higher-order pages.

INTRODUCTION

4 Linux Con Japan 2012

• It is important to measure fragmentation level
across each zones and for each higher-order
allocation in kernel.

• We believe by measuring fragmentation level
during page allocation we can control higher-
order allocation failure in kernel.

• We developed kernel utility to measure
fragmentation level during runtime without
enabling memory COMPACTION.

5

MEASURING FRAGMENTATION LEVEL

Linux Con Japan 2012

• Formula to measure fragmentation level in
percentage :

6

MEASURING FRAGMENTATION LEVEL

TotalFreePages = Total number of free pages in each Node
N = MAX_ORDER - 1 The highest order of allocation
j = the desired order requested
i = page order 0 to N
Ki = Number of free pages in ith order block

(The above formula derived from Mel Gorman’s paper : “Measuring the Impact of the Linux Memory Manager”)

Linux Con Japan 2012

• SAMPLE OUTPUT : cat /proc/fraglevelinfo

7

MEASURING FRAGMENTATION LEVEL

Linux Con Japan 2012

Example:

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 3 20 104 13 13 1 1 1 0 0 0

Lets say a NORMAL zone looks like this at some point of time

Now lets apply our formula to measure fragmentation level for order 2^5.

Here , TotalFreePages = (3x1 + 20x2 + 104x4 + 13x8 + 13x16 + 1x32 + 1x64 + 1x127) = 994

Therefore;
% Fragmentation =
(994 - [(2^5)*1 + (2^6)*1 + (2^7)*1 + (2^8)*0 + (2^9)*0 + (2^10)*0]) * 100) / 994

% Fragmentation = (994 - [32 + 64 + 128]) / 994 = ((994 – 224) * 100) / 994

%Fragmentation = (770 * 100) / 994 = 77.46 % 77 % (round off)

8 Linux Con Japan 2012

• We developed a sample kernel module and test
utility to perform higher-order allocation and
doing memory fragmentation analysis before
and after the allocation.

• Test utility developed and tested for (K32, K36)

• Test Utility will be shared on LTP after further
improvements.

9

MEMORY FRAGMENTATION ANALYSIS

Linux Con Japan 2012

JUST AFTER PHONE BOOT-UP (Linux Kernel 2.6.36)

10 Linux Con Japan 2012

AFTER RUNNING VARIOUS APPLICATIONS (Browser, WiFi Video Share, Camera,
Voice Recorder, eBooks, Few Games) for ½ an Hour and then killing All)

11 Linux Con Japan 2012

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 3 1 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 197 129 0 0 0 0 0 0 0 0 0

Node 2, zone DMA 30 12 14 4 5 8 6 4 2 1 27

Enter the page order(in power of 2) : 16 2^4 order block 16 x 4K = 64K bytes

Enter the number of such block : 5

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 3 1 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 169 143 1 0 0 0 0 0 0 0 0

Node 2, zone DMA 19 12 12 5 2 7 6 4 2 1 27

/opt/pintu # ls -l /dev/pinchar
crw------- 1 root root 10, 49 Jan 12 13:21 /dev/pinchar

/opt/pintu # ./app_pinchar.bin

Explanation :
5 of 2^4 order blocks were requested. These request could only be satisfied by Node 2,
Thus Node 2 were selected for allocation. But in Node 2 also, out of 5 (2^4) blocks only 3
could be allocated. Then the other 2 were allocated by splitting the 2^5 order blocks.
5 x 2^4 = [3 x 2^4 + (1 x 2^5)] = [3 x 2^4 + (1 x 2 x 2^4)] = [5 x 2^4]

State After The Allocation Request Is Successful

ALLOCATION SUCCESS CASE – (Kernel 2.6.32)

12 Linux Con Japan 2012

ALLOCATION FAILURE CASE – (Kernel 2.6.32)

Buddy State Before Allocation

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 1 0 0 0 1 0 2 0 0 0 0

Node 1, zone DMA 247 181 15 1 1 2 0 9 10 8 11

Node 2, zone DMA 19 19 11 3 6 3 4 2 2 2 29

Enter the page order(in power of 2) : 1024 2^10 order block 1024 x 4K = 4096K bytes
Enter the number of such block : 50 (this is the highest order)

ERROR : ioctl - PINCHAR_ALLOC - Failed, after block num = 48 !!!

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 1 0 18 9 0 0 0 0 0 0 0

Node 1, zone DMA 88 77 36 25 25 43 23 19 18 11 20

Node 2, zone DMA 18 14 10 4 5 2 3 3 2 2 29

Buddy State After Allocation FAILED And Other Allocation Freed

Explanation : The interesting think to note here is that after requested allocation was failed,
kernel tried to arrange that many blocks in desired order so that next similar request can be
succeeded.

Explanation : As you can see the allocation request of 1024 x 50 pages is failed after 47 such
allocation. But still there were enough free pages available in lower order.

13 Linux Con Japan 2012

• __alloc_pages_nodemask : This is the heart of
all memory allocation in kernel.

• We measure fragmentation level for each
higher order here.

• Track higher-order allocation during high
fragmentation. Anything above
PAGE_ALLOC_COSTLY_ORDER(==3) is
considered higher-order allocation in kernel
and becomes critical.

14

Observations

Linux Con Japan 2012

• Direct reclaim does some progress but still could not
return any pages during first run.

• Similarly direct compact is helpful but only if pages are
movable.

• According to our observation: direct_reclaim leaves
many pages MOVABLE.

• Thus we think first direct_reclaim and then
direct_compact may be more useful under certain
conditions. We will see these results in next slides.

• According to our experiment, a minimum of 2 sec
delay is required after direct_reclaim to succeed
subsequent allocation.

15

Observations

Linux Con Japan 2012

Experiments Results

• We performed some experiments with higher-order
allocation and got some results.

• We found that whenever we run any application
“Xorg” perform 4 or 8 order allocation.

• The browser always requires order-4 allocation.

/opt/pintu # ps ax | grep browser
 7159 ? Ssl 0:03 /opt/apps/com.samsung.browser/bin/browser

[3830.215613] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.227243] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 8, Fragmentation Level = 29%
[3830.235645] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.244575] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
(Around 10 times)

[3831.355884] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.364649] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
[3831.373484] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.383134] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%
(Around 26 times)

16 Linux Con Japan 2012

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 685 104 1 1 0 0 0 1 0 0 0

Node 1, zone DMA 33 19 31 18 9 1 1 0 0 0 0

Node 2, zone DMA 11 50 9 5 5 3 2 1 0 0 0

Enter the page order(in power of 2) : 1024 2^10 order block 1024 x 4K = 4096K bytes
Enter the number of such block : 10 (this is the highest order)

[24768.550017] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.559578] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 0, ORDER = 10, Fragmentation Level = 100%
[24768.568020] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.578686] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 1, ORDER = 10, Fragmentation Level = 100%
[24768.587251] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.597919] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 2, ORDER = 10, Fragmentation Level = 100%
[24768.606486] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[24768.615141] app_pinchar.bin: page allocation failure. order:10, mode:0x4020

 ---------------- Wait for 2 seconds and retry allocation ----------
[24770.669441] [HIGHERORDER_DEBUG] : Trying - Final time !!!!!!!!!!!
[24770.686688] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0) !

Explanation : As you can see here, due to 100% fragmentation, page allocation request was
failing, even after direct reclaim (slow path). But after a delay and retrying allocation
request again, all subsequent allocation were successful.
This delay indicates something needs to be done after direct reclaim. Maybe wait till lazy
buddy allocator arranges free pages in the subsequent free areas.

RESULT #1 - (With Kernel 2.6.32)

17
Linux Con Japan 2012

RESULT #2 – (Kernel 2.6.36) [Without COMPACTION]

Initial Fragmentation Level

18 Linux Con Japan 2012

19

After Higher order allocation request

./app_pinchar.bin 1024 25

[17949.789934] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17949.801633] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 92%
[17949.811073] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[17949.831793] [HIGHERORDER_DEBUG] : did_some_progress = 151
[17949.844090] [HIGHERORDER_DEBUG] : NO pages........even after direct reclaim

[17949.859104] app_pinchar.bin: page allocation failure. order:10, mode:0x40d0
------------------------------------- Wait for 2 seconds and retry allocation ---------------------
[17951.879156] [HIGHERORDER_DEBUG] : Trying - Final time !!!!!!!!!!!
[17951.893248] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0)

[17960.189583] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17960.201128] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 98%
[17960.210269] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!
[17960.335044] [HIGHERORDER_DEBUG] : did_some_progress = 887
[17960.339918] [HIGHERORDER_DEBUG] : Got some pages after direct reclaim
[17960.368939] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 4) !

[17964.518845] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17964.530629] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 83%
[17964.547138] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 8) !
[17965.552976] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17965.564319] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 84%
[17965.580823] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 9) !
[17966.586440] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17966.597175] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 85%
[17966.613424] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 10) !

Allocation failed directly during the first attempt itself even after direct reclaim. But after
introducing a delay and retrying, all further allocation succeeded. May be Kswapd takes
sometime to clear up dirty pages and buddy adding it back to free area.

Linux Con Japan 2012

20

Final Fragmentation Level

Here you can see lots of movable pages after lots of direct reclaim. Thus direct compact
might be helpful after direct reclaim and not before.

Linux Con Japan 2012

21

EXPERIMENTATION DATA

Page
Order

Block
Used

Available
Blocks

No of Blocks
Requested

Current
Fragmentation Level

No of Blocks
Allocated

Pass
Rate

10 1024 0 20 100% 20 100%

9 512 11 20 94% 20 100%

8 256 4 20 90% 20 100%

8 256 0 50 100% 50 100%

9 512 1 30 97% 30 100%

10 1024 28 40 10% 40 100%

10 1024 0 50 100% 46 92%

DATA COLLECTED ON :
Kernel 2.6.32 [DRAM 512MB, no swap]

Linux Con Japan 2012

22

• Measuring fragmentation level and tracking higher-
order is important at least for low memory notifier.

• It was observed that allocation takes slowpath
whenever fragmentation level is above 90%.

• The delay introduced here is only for experimental
purpose.

 Delay could be because, dirty pages has to be written to the
disk before it is marked freed.

 May be the real thing could be to wait till lazy buddy
allocator rearranges the free pages.

 This is valid only for GFP_KERNEL where a sleep is allowed.

SUMMARY

Linux Con Japan 2012

23

• Can we introduce something like system wide
fragmentation level across all zones???

 As shown in the experimental data in previous slides

 Auto recovery if fragmentation crosses > 90%

• From kernel2.6.35 COMPACTION contains its own
fragmentation level measurement.
 /sys/kernel/debug/extfrag/unusable_index

 But this requires COMPACTION and HUGETLB to be enabled.

 May be we can utilize this from kernel2.6.35 onwards.

 Difficult to back port compaction to lower kernel version.

 Mostly helpful for user space allocation where pages are
movable.

Linux Con Japan 2012

24

• Reserving memory during boot time using CMA can
reduce fragmentation to some extent.

 But good only if we have bigger RAM.

• But sometimes CMA region itself suffers from memory
fragmentation and may again requires help of
compaction to move pages.

 May be we can introduce a new ZONE such as CMA_ZONE
for all CMA memory allocation.

• Is rebooting the only option left?. Can we do
something else?

• Further investigation is in progress.

Linux Con Japan 2012

25

• Memory fragmentation is like a decease which
can only be prevented and cannot be cured.

• Therefore extra care needs to be taken while
designing your system itself.

Linux Con Japan 2012

26

Some References

1. Wikipedia, “Buddy Memory Allocation”. http://en.wikipedia.org/wiki/Buddy_memory_allocation.

2. Jonathan Corbet. (2010), “Memory Compaction” http://lwn.net/Articles/368869/

3. Lifting The Earth (2011) “Linux Page Allocation Failure”, http://www.linuxsmiths.com/blog/.

4. Mark S. Johnstone and Paul R. Wilson (1997), “The Memory Fragmentation Problem – Solved?”

5. Mel Gorman and Patrick Healy (2005) “Measuring the Impact of the Linux Memory Manager”
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf

6. Corbet (2004), “Kswapd and higher-order allocations” http://lwn.net/Articles/101230/

Linux Con Japan 2012

http://en.wikipedia.org/wiki/Buddy_memory_allocation
http://lwn.net/Articles/368869/
http://www.linuxsmiths.com/blog/
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://lwn.net/Articles/101230/

27 Linux Con Japan 2012

