Linux Memory Fragmentation:
Observation and Analysis
on Smart Phones

Fragmentation Level

0
H1
d 2
M3
M4
M5
k6
M7
kd 8
MO
k10

Pintu Kumar
pintu.k@samsung.com

Linux Con Japan 2012

mailto:Pintu.k@samsung.com

CONTENT

Jintroduction

JMeasuring the memory fragmentation level
JdMemory Fragmentation Analysis
JObservations

JExperimentation Results

JdSummary

_J1Some References

Linux Con Japan 2012

INTRODUCTION

* What is Memory Fragmentation ?

When a Linux device has been running continuously
over a time without reboot and keeps allocating and
de-allocating pages, the pages become fragmented. The
bigger contiguous free pages become zero and free
pages are only available in many smaller pages which
are not contiguous. Thus even if we have lots of free
memory in smaller units, the page allocation in kernel
may fail.

This _typical problem _is called “External Memory
Fragmentation” here after referred to as memory
fragmentation.

Linux Con Japan 2012 3

INTRODUCTION

* Effect of Memory Fragmentation :

» Memory Fragmentation can cause a system to
lose its ability to launch new process.

» Memory fragmentation becomes more of an
issue in embedded devices and Linux mobiles.
** DRAM + Flash , Swapless system
» Memory fragmentation can become more critical

with high multimedia and graphics activities
which requires contiguous higher-order pages.

Linux Con Japan 2012

MEASURING FRAGMENTATION LEVEL

It is important to measure fragmentation level
across each zones and for each higher-order
allocation in kernel.

We believe by measuring fragmentation level
during page allocation we can control higher-
order allocation failure in kernel.

We developed kernel utility to measure
fragmentation level during runtime without
enabling memory COMPACTION.

Linux Con Japan 2012

MEASURING FRAGMENTATION LEVEL

* Formula to measure fragmentation level in
percentage :

N
TotalFreePages — > (2'.k,)

Fraglevel(%o) = =7 X100
TotalFreelP ages

TotalFreePages = Total number of free pages in each Node

N = MAX_ORDER -1 =» The highest order of allocation
j = the desired order requested

i = page order = O to N

Ki = Number of free pages in ith order block

(The above formula derived from Mel Gorman’s paper : “Measuring the Impact of the Linux Memory Manager”)

Linux Con Japan 2012

MEASURING FRAGMENTATION LEVEL

 SAMPLE OUTPUT : cat /proc/fraglevelinfo

Fragmentation Level
Measurement
(cat /proc/fraglevelinfo)
Page | Page Free |Mowable | Reclaimable Fragmentation Fragmentation Level
Order|Block o - - Lewvel 19% 29 . e
(i) (k) ages ages ages [26] 0% 5% =0
[o] 1 38 36 1 0% _10% -
1 2 59 55 2 194 11% 2
2 a A0 32 1 254 3
3 8 19 16 o 524 = A
4 16 12 10 1 724 & S
5 32 4 2 1 10% ol 6
= 61 6 4 1 119 -7
7| 128 7 F] o 17% s
8| 256 7 o] 1 30%
ol 9
9| 512 2 1 o 5694 10
10| 1024 2 2 o 70% -
TOTAL 6932 3954 377 19%
N -
I
TotalFreePages— E (2°k)
FragleveK%)— £=0 X100
TotalFreePages

Linux Con Japan 2012

Example:

Lets say a NORMAL zone looks like this at some point of time

20

21

22

23

24

Node 0, zone

Normal

3

20

104

13

13

26

27

28

Now lets apply our formula to measure fragmentation level for order 2/5.

1

1

0

Here, TotalFreePages = (3x1 + 20x2 + 104x4 + 13x8 + 13x16 + 1x32 + 1x64 + 1x127) = 994

Therefore;

% Fragmentation =
(994 - [(275)*1 + (276)*1 + (277)*1 + (278)*0 + (279)*0 + (2710)*0]) * 100) / 994

% Fragmentation= (994 - [32+64 +128]) /994 = ((994 — 224) * 100) / 994

%Fragmentation = (770 * 100) /994 = 77.46 % =» 77 % (round off)

Linux Con Japan 2012

MEMORY FRAGMENTATION ANALYSIS

* We developed a sample kernel module and test
utility to perform higher-order allocation and
doing memory fragmentation analysis before
and after the allocation.

e Test utility developed and tested for (K32, K36)

* Test Utility will be shared on LTP after further
improvements.

Linux Con Japan 2012 9

JUST AFTER PHONE BOOT-UP (Linux Kernel 2.6.36)

Jopt /home rToot & cat Jprocy/Sfraglewvelintfo
Mode: O, Zone:Normal

order FrecsPages MowablePages ReclaimablaerPages Fragmentation[3]
O 2 O 1 O%5
1 2 1 1 02s
2 5 1 2 025
3 3 1 2 025
4 4 1 2 025
5 2 1 1 025
& L& 1 O 02
7 5 1 1 02s
8 1 O O 1%5
9 1 O 1 125
10 102 103 o 125

TotalFreePages: 1L0&414

TotalMovablerPages: 1032678
TotalrRreclaimablerages: 731
Overall Fragmentation: 02

Mode 0, Fone:HighMem

order FreacsPages MowablePages ReclaimablerPages Fragmentation[2]

O 15 5 O
1 15 2 o 025
2 131 2 o 025
3 10 5 o 025
4 10 G O 02s
5 131 G O 02s
o] <4 2 O 1%5
i F2 5 O 125
B 1 1 O 222
9 1 O o 375

10 55 54 O A28

TotalFreerFages: 59049
TotalMovablerPages: 56665
Totalreclaimablerages: 0O
Overall Fragmentation: 1%

Jopt/home/root # cat /proc/buddyinfo
Node O, zone Normal 2 2 5 3 4 2
Node 0, zone Highmem 15 15 11 10 10 11

3 1 1 102
55

o
e
—
=

Linux Con Japan 2012 10

AFTER RUNNING VARIOUS APPLICATIONS (Browser, WiFi Video Share, Camera,

Voice Recorder, eBooks, Few Games) for %2 an Hour and then killing All)

JopT/pintu # cCcat fermcffragTEVETﬁﬂfﬂ
Mode: 0, Fone:MNMorma

TotalFreePages: B22323
TotalMovablePages: 576326

TotalreclaimablerPages: '
Owverall Fragmemntation

Mode: 0, Zone:HighMem

TotTtalFreePages: 225132
TotalMovablePages: 19078

TotalReclaimablerages:
Ooverall Fragmentation 5O%s

ordeaer FresPages MowvablerPages Reclaimablerages
o 11329 S00 a1
a 7Fo5 540 7
2 500 345 2
e 215 229 1
4 2327 168 O
5 1314 J0 1
L= a7 2656 1
7 25 15 1
8 35 10 1
o 16 o O

10 L =1 = o

order FreesPages MowvablerPages ReclaimablerPages
O 2281 1994 o
1 1282 13140 0
2 ol 781 O
= 474 =10 O
<4 226 192 O
5 106 85 O
L= 38 268 o
r 5 L= o
8 3 o o
9 0 0 0
10 O O O

Fragmenitation[5]

035
125
=
53
B35
= e
A 72E
2325
282
=
i

Fragmentation[%]
035
Q%s
2125
363

e

Jopt/pintu # cat /proc/buddyinfo
Node O, zone Normal 1139 705 500 315 237 114
Node 0, zone Highvem 2250 1382 86l 474 226 106

Linux Con Japan 2012

b7
38

ALLOCATION SUCCESS CASE — (Kernel 2.6.32)

Jopt/pintu # Is -| /dev/pinchar
1root root 10, 49Jan 12 13:21 /dev/pinchar

[opt/pintu # ./app_pinchar.bin

20 21 22 23 24 25 26 27 28 29 210

Node 0, zone DMA 3 1 1 1 0 0 0 1 0 0 0
|Node 1,zone DMA 197 129 0 0 0 0 0 0 0 0 0
|Node 2,zone DMA 30 12 14 4 5 8 6 4 2 1 27
Enter the page order(in power of 2) : 16 274 order block | 16 x 4K = 64K bytes
Enter the number of such block :
State After The Allocation Request Is Successful

20 21 22 23 24 25 26 27 28 29 210
Node 0,zone DMA 3 1 1 0 0 0 1 0 0 0
Node 1, zone DMA 169 143 0 0 0 0 0 0 0 0
Node 2,zone DMA 19 12 12 5 H 6 4 2 1 27
Explanation :

5 of 274 order blocks were requested. These request could only be satisfied by Node 2,
Thus Node 2 were selected for allocation. But in Node 2 also, out of 5 (2°4) blocks only 3
could be allocated. Then the other 2 were allocated by splitting the 275 order blocks.
5x2M = [3x2M + (1x2/75)] = [3x2M + (1x2x2M4)] = [5x2/M4]

Linux Con Japan 2012

12

ALLOCATION FAILURE CASE — (Kernel 2.6.32)

Buddy State Before Allocation

20 21 22 23 24 25 26 27 28 29 210
Node0,zone DMA| 1 0 0 0 1 0 2 0 0 0 0
Node1,zone DMA| 247 | 181 | 15 1 1 2 | 0| 9 | 10| 8 11
Node2,zone DMA| 19 | 19 | 11 3 6 3 | a4 2 2 2 29
Enter the page order(in power of 2) : 1024 | 2710 order block 1024 x 4K = 4096K bytes

Enter the number of such block :

(this is the highest order)

ERROR : ioctl - PINCHAR_ALLOC - Failed, after block num =48 !!!

Explanation : As you can see the allocation request of 1024 x 50 pages is failed after 47 such

allocation. But still there were enough free pages available in lower order.

Buddy State After Allocation FAILED And Other Allocation Freed

20 21 22 23 24 25 26 27 28 29 210
Node 0, zone DMA 1 0 18 9 0 0 0 0 0 0 0
|Node 1,zone DMA 88 77 36 25 25 43 23 19 18 11 20
|Node 2,zone DMA 18 14 10 4 5 2 3 3 2 2 29

Explanation

: The interesting think to note here is that after requested allocation was failed,

kernel tried to arrange that many blocks in desired order so that next similar request can be

succeeded.

Linux Con Japan 2012

13

Observations

e alloc_pages nodemask : This is the heart of
all memory allocation in kernel.

* We measure fragmentation level for each
higher order here.

* Track higher-order allocation during high
fragmentation. Anything above
PAGE_ALLOC_COSTLY _ORDER(==3) is
considered higher-order allocation in kernel
and becomes critical.

Linux Con Japan 2012

14

Observations

* Direct reclaim does some progress but still could not
return any pages during first run.

e Similarly direct compact is helpful but only if pages are
movable.

* According to our observation: direct_reclaim leaves
many pages MOVABLE.

* Thus we think first direct_reclaim and then
direct_compact may be more useful under certain
conditions. We will see these results in next slides.

* According to our experiment, a minimum of 2 sec
delay is required after direct_reclaim to succeed
subsequent allocation.

Linux Con Japan 2012 15

Experiments Results

 We performed some experiments with higher-order
allocation and got some results.

 We found that whenever we run any application
“Xorg” perform 4 or 8 order allocation.

 The browser always requires order-4 allocation.

Jopt/pintu # ps ax | grep browser
7159°? Ssl 0:03 /opt/apps/com.samsung.browser/bin/browser

[3830.215613] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.227243] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 8, Fragmentation Level = 29%

[3830.235645] [HIGHERORDER_DEBUG] : __ alloc_pages_nodemask is called by process <PID = 1168, NAME = Xorg> !!!
[3830.244575] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%

(Around 10 times)

[3831.355884] [HIGHERORDER_DEBUG] : __ alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.364649] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%

[3831.373484] [HIGHERORDER_DEBUG] : __ alloc_pages_nodemask is called by process <PID = 7159, NAME = browser> !!!
[3831.383134] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 4, Fragmentation Level = 13%

(Around 26 times)

Linux Con Japan 2012

16

RESULT #1 - (With Kernel 2.6.32)

2° 2! 22 23 24 | 25 | 28 | 27 | 28 | 2°
Node 0,zone DMA| 685 104 1 0 0 0 1 0 0
Node1,zone DMA| 33 | 19 | 31 | 18 | 9 1 | 1| o0 0 | o
Node2,zone DMA| 11 | 50 | 9 5 3 | 2 1 0 0
Enter the page order(in power of 2) : 1024 | 2710 order block 1024 x 4K = 4096K bytes

Enter the number of such block :

10

(this is the highest order)

[24768.550017] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.559578] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 0, ORDER = 10, Fragmentation Level = 100%

[24768.568020] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.578686] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 1, ORDER = 10, Fragmentation Level = 100%

[24768.587251] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 2289, NAME = app_pinchar.bin> !!!
[24768.597919] [HIGHERORDER_DEBUG] : ZONE : DMA, NODE : 2, ORDER = 10, Fragmentation Level = 100%

[24768.606486] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!

[24768.615141] app_pinchar.bin: page allocation failure. order:10, mode:0x4020

[24770.686688] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0) !

Explanation : As you can see here, due to 100% fragmentation, page allocation request was
failing, even after direct reclaim (slow path). But after a delay and retrying allocation
request again, all subsequent allocation were successful.

This delay indicates something needs to be done after direct reclaim. Maybe wait till lazy

buddy allocator arranges free pages in the subsequent free areas. 17
Linux Con Japan 2012

RESULT #2 — (Kernel 2.6.36) [Without COMPACTION]

Initial Fragmentation Level

Jopt/pintu # cat f?rucffrag1eve11nfu i cat Sproc/buddyinfo
Node:0, Zone:Norma

order Freerages Movablerages rReclaimablerages Fragmentation[%]
0 271 25 0 0%
1 171 5 0 2%
2 143 1 1 4%
3 100 1 18 9%
4 154 1 61 15%
5 79 2 27 33%
5] 26 1 5] 53%
i 7 3 3 6 5%
8 10 a a 72%
9 0 a a Q2%

10 1 0 0 Q2%

TotalFreepPages: 13117

TotalMovablerpages: 575

TotalReclaimablerPages: 2756

overall Fragmentation: 39%

Node:0, Zone:HighMem

order Freerages Movablerages rReclaimablerages Fragmentation[%]
0 6850 6837 0 0%
1 BBZ6 BEO3 0 26%
2 261 255 0 O5%
3 9 1 0 909%
4 5 3 0 909%
3 0 0 0 10032
G 0 0 0 10032
7 0 0 0 1002
8 0 a a 1005
2 0 a a 1005

10 0 a a 1005

TotalFreerages: 25698

TotalMovablePages: 25551

TotalrReclaimablerPages: 0

overall Fragmentation: B83%

Node O, zone Morma’l 271 171 143 100 154 79 26 7

Node 0, zone Highmem 6850 8826 261 9 5 0 0 0

Linux Con Japan 2012

After Higher order allocation request

./app_pinchar.bin 1024 25

[17949.789934] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> 11!
[17949.801633] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 92%

[17949.811073] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask : Allocation going via - slowpath !!!

[17949.831793] [HIGHERORDER_DEBUG] : did_some_progress = 151

[17949.844090] [HIGHERORDER_DEBUG] : NO pages........ even after direct reclaim

[17949.859104] app_pinchar.bin: page allocation failure. order:10, mode:0x40d0
< Wait for 2 seconds and retry allocation ->

[17951.893248] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 0)

[17960.189583] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17960.201128] [HIGHERORDER _DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 98%

[17960.210269] [HIGHERORDER _DEBUG] : _ alloc_pages _nodemask : Allocation going via - slowpath !!!

[17960.335044] [HIGHERORDER_DEBUG] : did_some_progress = 887

[17960.339918] [HIGHERORDER _DEBUG] : Got some pages after direct reclaim

[17960.368939] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 4) |

[17964.518845] [HIGHERORDER_DEBUG] : _ alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17964.530629] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 83%

[17964.547138] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 8) !

[17965.552976] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17965.564319] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 84%

[17965.580823] <PINCHAR> : PINCHAR_ALLOCATE - Success(index =9) !

[17966.586440] [HIGHERORDER_DEBUG] : __alloc_pages_nodemask is called by process <PID = 27713, NAME = app_pinchar.bin> !!!
[17966.597175] [HIGHERORDER_DEBUG] : ZONE : Normal, NODE : 0, ORDER = 10, Fragmentation Level = 85%

[17966.613424] <PINCHAR> : PINCHAR_ALLOCATE - Success(index = 10) !

Allocation failed directly during the first attempt itself even after direct reclaim. But after

introducing a delay and retrying, all further allocation succeeded. May be Kswapd takes

sometime to clear up dirty pages and buddy adding it back to free area. 19
Linux Con Japan 2012

Final Fragmentation Level

Jopt/pintu # cat f?rncffrag1eve11nfﬂ ; cat /proc/buddyinfo
Mode: 0, Zone:Morma

order FreePages rReclaimablerPages Fragmentation[%]
0 Bod 125 035
1 Be3 118 03
2 Eog 107 23
3 659 7 5%
4 566 41 10%
5 358 28 18%
a 222 156 28%
7 a0 G 413
8 78 0 51%
a 12 0 69%
10 26 0 753%
TotalFreePages: 110818
TotalMovablePages: 70191
TotalReclaimablerages: 4735
overall Fragmentation: 27%
Mode:0, Zone:HighMem
order FreePages ReclaimablerPages Fragmentation[%]
0 4579 0 03
1 8239 0 73
2 4789 0 3423
3 1760 0 65%
4 362 0] B5%
5 35 0 Q73
G 4 0 Q9%
7 0 0 1002
B 0 0 1002
9 0 0 1002
10 0 0 1002
TotalFreerages: 61461
TotalMovablerPages: 60783
TotalrReclaimablerages: 0O
overall Fragmentation: 71%
Node O, zone Mormal Ee4 BEa2 Eog G659 566 358 222 a0 78 132
hfcnde ,D’. zone Highmem 4579 8239 4789 1760 362 35 4 0 0 0

Here you can see lots of movable pages after lots of direct reclaim. Thus direct compact
might be helpful after direct reclaim and not before.

Linux Con Japan 2012 20

EXPERIMENTATION DATA

Page Block A;T(ialjl?sl € No of Blocks Fragm::trar:ir:n Level No of Blocks Pass
Order Used Requested Allocated Rate
10 1024 0 20 100% 20 100%
9 512 11 20 94% 20 100%
8 256 4 20 90% 20 100%
8 256 0 50 100% 50 100%,
9 512 1 30 97% 30 100%,
10 1024 28 40 10% 40 100%,
10 1024 0 50 100% 46 92%
DATA COLLECTED ON :

Kernel 2.6.32 [DRAM 512MB, no swap]

Linux Con Japan 2012

21

SUMMARY

* Measuring fragmentation level and tracking higher-
order is important at least for low memory notifier.

* |t was observed that allocation takes slowpath
whenever fragmentation level is above 90%.

* The delay introduced here is only for experimental

purpose.

> Delay could be because, dirty pages has to be written to the
disk before it is marked freed.

» May be the real thing could be to wait till lazy buddy
allocator rearranges the free pages.

» This is valid only for GFP_KERNEL where a sleep is allowed.

Linux Con Japan 2012 22

* Can we introduce something like system wide
fragmentation level across all zones???
» As shown in the experimental data in previous slides
» Auto recovery if fragmentation crosses > 90%

* From kernel2.6.35 COMPACTION contains its own

fragmentation level measurement.
> [sys/kernel/debug/extfrag/unusable_index

» But this requires COMPACTION and HUGETLB to be enabled.
» May be we can utilize this from kernel2.6.35 onwards.
» Difficult to back port compaction to lower kernel version.

» Mostly helpful for user space allocation where pages are
movable.

Linux Con Japan 2012 23

Reserving memory during boot time using CMA can
reduce fragmentation to some extent.

» But good only if we have bigger RAM.
But sometimes CMA region itself suffers from memory
fragmentation and may again requires help of
compaction to move pages.

» May be we can introduce a new ZONE such as CMA_ZONE
for all CMA memory allocation.

Is rebooting the only option left?. Can we do
something else?

Further investigation is in progress.

Linux Con Japan 2012 24

 Memory fragmentation is like a decease which
can only be prevented and cannot be cured.

* Therefore extra care needs to be taken while
designing your system itself.

Linux Con Japan 2012 25

Some References

Wikipedia, “Buddy Memory Allocation”. http://en.wikipedia.org/wiki/Buddy memory allocation.

Jonathan Corbet. (2010), “Memory Compaction” http://lwn.net/Articles/368869/

Lifting The Earth (2011) “Linux Page Allocation Failure”, http://www.linuxsmiths.com/blog/.

Mark S. Johnstone and Paul R. Wilson (1997), “The Memory Fragmentation Problem — Solved?”

Mel Gorman and Patrick Healy (2005) “Measuring the Impact of the Linux Memory Manager”
http://thomas.enix.org/pub/rmll2005/rmll12005-gorman.pdf

Corbet (2004), “Kswapd and higher-order allocations” http://lwn.net/Articles/101230/

Linux Con Japan 2012 26

http://en.wikipedia.org/wiki/Buddy_memory_allocation
http://lwn.net/Articles/368869/
http://www.linuxsmiths.com/blog/
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://thomas.enix.org/pub/rmll2005/rmll2005-gorman.pdf
http://lwn.net/Articles/101230/

Linux Con Japan 2012

