
CTO, Server Virtualization; SCSI Subsystem, Parisc Kernel Maintainer

James Bottomley

8 June 2012

Technical vs Social Engineering
What This means for Japanese Developers

2 2

In the Beginning

• In 1992, the kernel began life as a very technical
place.

• It had very few features and desperately needed
others adding.

• Getting patches in was very easy simply because so
much work needed to be done.

• Reviews were mostly done by Linus before he put
your patch into his kernel tree.

• Reviews tended to concentrate on the technical
substance of the patch rather than feature justification.

3 3

The Bottom Line

• Anyone could get a patch into the kernel
• For almost any feature
• The only requirement was that you be able to write the
code to implement it.

• Most of this early code wasn't of the highest quality
– SCSI old error handler and IDE driver full of busy waits

– Block layer had a single lock to protect all devices

– TTY layer had a static array for ttys and grew a bit like
spaghetti.

• Emphasis on enabling features rather than getting the
code perfect

4 4

The Problems

• This anything goes style produced a full featured
kernel very fast

• But it left a lot of problems in its wake.
• Robustness and Scaling were really bad
• I mean really:

– The kernel was liable to crash frequently

– More than one disk worked really slowly

– If you had an error on your disk or cable, error recovery rarely
actually recovered the error.

– SMP, while functional rarely delivered the performance of
more than one of your processors.

5 5

About ten years later

• Around the time of the first kernel summit in 2001
fixing the problems was becoming urgent

• Eric Youngdale rewrote the entire SCSI layer to give it
a well defined API and a threaded error handler

• Jens Axboe rewrote the block layer to divide the single
monolithic io lock into a fast, robust, per-queue locked
system that would be able to scale.

• The USB subsystem got rewritten several times
• A programme of fine grained locking was introduced
so we could reliably scale beyond a single CPU

• Unfortunately, everyone was too afraid to touch the
TTY layer!

6 6

Attitudes Change

• It's no longer about code and features
• It's about code quality and feature justification
• It also becomes more about ensuring that new code
doesn't disrupt the old code

– i.e. doesn't cause regressions

• Linus isn't the only one reviewing the code any more
– The kernel now has ~100 Maintainers

– Each of whom is supposed to make sure the code going into
their subsystem is correct and tested.

• Review rises in importance as a vital function for code
cleanliness in the kernel

7 7

Fast Forward to Today

• The kernel is incredibly feature rich
• Which makes it very complex

– And thus, adding to the complexity with a new feature gets
looked at very closely.

• A lot of our effort goes into preventing regressions
• We've developed elaborate processes for all of this
and a host of static checking tools

• It's no longer just about code, it's about style and
process as well.

– i.e. it's no longer technical, it's also social

8 8

To Expand on This

• Open Source isn't just a licence, it's a process
• Actually, it's exactly like ISO9001 but worse

– Over time we've added lots of little things
> Signed off by

> Coding styles

> Dos and Don'ts for patches

• Most people who are maintainers today grew up
evolving this process

– So we all understand what it is and why we're doing it

• However, it can look daunting to outsiders

9 9

So How do you get patches in

• Firstly, this is mostly about features
• Bug Fixes are easy

– Provided you can describe the bug and its effects

– Not every bug patch does this …

• Need to Socialise the feature first
– Build a community of users preferably vocal.

– But if not users, then a community of interested people

– Be prepared to argue for the feature, explaining what it is,
what you'll use it for and why it is useful.

• Conferences are great venues to meet people outside
the mailing list environment and talk about what you're
tring to do

10 10

Of course it goes without saying that

• You first identify and read the relevant mailing list
• You read all the necessary conventions

– Documentation/HOWTO

– Documentation/CodingStyle

– Documentation/SubmittingPatches

• These are even (thanks to the kernel translation
project) available in Japanese.

• Following these to the letter is very important
– scripts/checkpatch.pl

– Does this automatically for you

11 11

The Importance of Coding Style

• Mailing lists can be very hostile places
• There are some elements who believe attacking
others demonstrates their own cleverness

• Any CodingStyle violation that is flagged by
checkpatch.pl is easy meat for them

– They don't have to think about anything, just feed the mailing
list into checkpatch and flame if the result isn't right

• If you adhere to the rules and run your own patches
through checkpatch, you forestall this

– Means that hopefully the arguments will be about the contents
of your patch not its style.

12 12

But Remember

• The Perfect is the enemy of the good
• The patch doesn't have to be perfect
• Submit Early and Often … even before you've
developed all the code

• It's often easier to have constructive arguments over
incomplete code

– Because everyone sees they can still give input

• Just remember to follow the rules and the coding style.

13 13

Arguing on Mailing Lists

• First, be technical, never personal
– Remember you're the expert on the patch

• Only respond to the technical content (if any) in an
email

– If there's no technical content, don't respond at all

• Lurk on the lists to identify who the important people
are and pay attention to them

– They submit lots of patches that get accepted

– They provide feedback which is often considered in
discussions

– They come up with sensible, constructive suggestions

14 14

Defusing Aggression on Mailing Lists

• Arguments sometimes get very heated
– Especially on LKML where we have a dedicated community of

flamers

• Always keep it technical, never personal
• Knowing and being known to people on mailing lists
really helps

– You're no longer an email address, you're a person they've
met

• So going to Conferences or other gatherings just to
meet people will really assist you

– If you don't speak English very well, they'll understand

15 15

You Must Be Prepared to Argue

• Know why you need the feature and be prepared to
explain it

– Practice beforehand with friends and colleagues.

– Give seminars to your local LUG explaining what you want to
do.

– Preferably in English because English is the language of
mailing list exchange

• Ideally have a list of other communities it will help
– It's even better if you contact them ahead of time and get them

to chime in

• Stick to being polite and technical, but also firm
– If you have a problem understanding some comment, say so

16 16

Final words about Arguing on Lists

• Make sure you argue with the right people
– i.e. the people you've previously observed to be influential

– They may be hard to persuade, but they'll be reasonable
– Remember they may be arguing simply because they don't

understand the patch, so make sure to explain itl

• Don't waste time arguing with the wrong people
– Even if you finally win, no-one useful will be paying attention.

• Be prepared to accept feedback and update your
patch accordingly.

• Many patches go through several iterations before
being accepted.

17 17

Writing Good Change Logs
(my pet maintainer peeve)

• A Good change log should describe what you're doing
and why

• It should not describe the code
– We can all read C, so, unless the code is badly commented or

very obscure, we can simply read it.

• Bad:
– Insert a spinlock into foo_bar function

• Good:
– An oops was observed removing the foo device while playing

music because multiple threads were altering the same data.
Fix by using a spinlock to make the foo_bar function single
threaded

18 18

Splitting your patch into a series

• The object of a patch series is to make the feature
easy to review

• Split the patch into functional areas which can be
reviewed independently.

• Think about how you explain your patch: first you talk
about X, then Y then Z

– can you split the patch into an X piece a Y piece and a Z piece
to match your explanation

• If you can split your patch into a series that follows
how you would explain it, then the patch series will be
easier to understand

19 19

Repeat: Try this out on your peers first

• If you follow all these rules, it's still best to try it with a
narrow audience first

• So explain your patch to the local linux users group or
work place seminar

– You can do this in Japanese too first time around
– Although you'll need to use English for the lists

• It will help you organise your thoughts and also hear
what people don't understand about it

• Because you've already argued for the patch, you'll be
more confident on the mailing list

• You'll also understand some of the criticism you'll get
back because you've heard it before

20 20

General Conclusions

• Follow the Rules
• Identify the important people

– And the people to ignore
– Meeting the people in your community is also important for

improving communications

• Practice arguing for your patch in a friendly
environment

– Before you try it out on the mailing lists

• Build consensus for your feature on the list
– Remember to explain what it does and why you need it

– Modify it to make it more useful to others

• Everyone's still afraid to touch the tty layer

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

