
Intrinsyc Software 

Linux on eMMC

Optimizing for Performance

Ken Tough

Principal Engineer

ktough@intrinsyc.com

mailto:uktough@intrinsyc.com


2

Agenda

 What's unique for eMMC (the black box)

 Effect on performance (inside the box)

 Improving performance
 MMC driver

 Block I/O

 Scheduler

 File Systems

 User Space

 Future, Q/A



3

What is eMMC?

 Solid state storage device on MMC bus

 Chip on PCB

 NAND flash based

 Block-based (sector) storage



4

Why eMMC matters

 Popular on embedded devices

 Cheap

 Flexible

 In theory, more "generic"



5

eMMC scenarios

 Tablets, smart phones with lots of DRAM

 Netbooks with lots of DRAM

 Multimedia players, USB memory sticks



MMC

Micro-Controller

Slower NAND
Flash

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

SRAM

Fast Cache
Flash

MMC 

Bus

Inside

Firmware



7

Inside the eMMC

 NAND flash arranged in pages

 Controller with temporary storage

 Wear levelling

 Free space management



8

eMMC characteristics

 Fast read access

 Fast read seek times

 Acceptable sequential write performance

 Poor random write performance



9

Discard (TRIM)

 eMMC TRIM command

 Tells controller what is free

 Frees up erase blocks & internal resources

 TRIM blocks on format

 Not same as "erase" command



10

eMMC spec performance

 Typically emphasizes sequential write performance

 Random accesses hit eMMCs internal pipelines

 Frequently limited by eMMC’s Random IOPs limit

 Minimum OP time regardless of OP size

 Not often data BW limited

 <200 IOPs (e.g. 4kB per OP)

 Analyze application’s eMMC read/writes patterns



11

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 Block IO & Cache

 IO Scheduler

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



12

MMC driver

 Maximum bandwidth enabled (8-bit, 50MHz)

 Enable DMA if option

 Power management

 Trim / vendor command support

 Benchmarking Log Device



13

Analysis at MMC/Block Level

0

5000

10000

15000

20000

25000
1 2 4 8 16 32 6
4

12
8

25
6

51
2

10
24

20
4

8

N
o

rm
al

iz
e

d
 C

o
u

n
t

Sectors per chunk

Histogram of chunk sizes

Reader

Surfing

Random



14

eMMC Read Times

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

m
il

ls
e

c

Read Chunk Size (sectors)



15

eMMC Write Times

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

m
il

li
se

c

Write Chunk Size (sectors)



16

 Wide variation in read/write times

 Big dependency on internal eMMC firmware

 Power Class support

 Geometry / technology

 Trim support

Vendor Performance



17

 Allows reads to bypass long writes

 Useful in very specific applications

 Small RAM

 Page/Block cache and IO Scheduler

 Internal eMMC Pipelines blocked anyway

 Multimedia apps and “long” buffering

MMC v4 High Priority Interrupt



18

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 Block IO & Cache

 IO Scheduler

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



19

Cache is King

 Alleviates write performance issues

 Improves read times even further

 Reduces NAND wear



20

I/O schedulers

 CFQ, noop, deadline

 Results are similar within ~10% range

 QOS considerations are more important than 
throughput



21

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



22

Filesystems

 Focus on write performance

 Tests run using fsbench (3.0 kernel, OMAP3 
eReader tablet, 8GB MMC, 512 MB RAM)

 Various low-level and high-level scenarios modelled

 EXT4, BTRFS, NILFS2 tested



23

Filesystem Benchmarks



24



25



26



27



28

EXT4 - a write

 Journal write (usually ~16K)

 inode update (usually 4K)

 Data goes into page cache



29

BTRFS - a write

 Update non-sync very fast

 Sync write puts tree leaves on eMMC

 Sync write is 4 non-sequential writes



30

NILFS2 - a write

 Log structured filesystem

 Stores the ‘update’

 One large (40K+) write

 Eventually “snapshot” needs flushing

 Initialization

 Recovery



31

EXT4 w/o journal

 Not too dangerous on embedded systems with 
fixed battery

 Good performance due to improved sequentiality



32

BTRFS

 If not using a lot of fsync/fdatasync

 Great large write performance

 Terrible on small/medium sync writes

 Good performance on multiple writes



33

NILFS2

 Consistent performance

 Potentially much faster if eMMC part has fast 
sequential performance

 Should theoretically be the fastest :-)



34

EXT4 with journal

 Consider RAM journal (warm DRAM reset)

 Tune journal flush timers

 Better than BTRFS on small/medium sync writes



35

Filesystem layout

 No swap

 Align partitions to erase block boundaries

 Extents match erase blocks

 System design (multiple storage devices)



36

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



37

User space

 Avoid synchronization on files (e.g. SQLite)

 Avoid sync/fsync/fdatasync/etc (batch 
transactions)

 Avoid small writes to files, better to buffer

 Don’t be afraid to read, be afraid to write!



38

Future

 Linaro project (www.linaro.org) working on 
improving eMMC experience

 eMMC 4.5 brings METADATA

 Effect of dirty throttling?

http://www.linaro.org


39

Summary

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



40

Conclusion

 EXT4 (discard, ram/no journal) is probably your 
best bet

 Try out a couple of configurations for the eMMC 
you are targeting

 Benchmark per Vendor

 Evaluate vendor commands

 Avoid writes! :-)



41

Questions?


