
  

GStreamer 1.0

No longer compromise 
flexibility for performance

Edward Hervey
Senior Multimedia Architect
edward@collabora.com
ELC 2012



GStreamer
● Open Source Multimedia Framework
● Set of libraries and plugins
● Direct Acyclic Graphs of elements
● API for plugins (to export features)
● API for applications

● “Flexibility and performance”



Gstreamer usage
● Desktop, embedded, server, TV, ...
● Playback, recording, real-time 

communicaiton, transcoding,..
● Linux, Windows, MacOsX, iOS, 

Android,..
● This talk is being recorded by 

GStreamer (UbiCast)
shameless ad



GStreamer 0.10
● 0.10 series (0.10.0 Dec 5 2005)
● Used widely and continuously 

improved
● More popular and solid than 

anticipated



0.10 Limitations
● Performance issues
● Some use-case very cumbersome to 

handle (hw-accel)
● Missing information
● Caps tightly coupled to buffer/memory
● Deprecated API



Enter GStreamer 1.0
● Talked about since 2007
● New challenges

 Embedded Platforms
 GPU
 Dynamic pipelines
 Re-negotiation



Goals
● Improve performance
● Allow more use-cases
● Avoid vendor 'hacks'
● Minimize downstream patches



GStreamer 1.0
● API/ABI cleanups and speedups
● Memory Management
● (Re)Negotiation
● Dynamic Pipelines
● Open the road to better performance
● More flexible/open API



Memory management
● 0.10

 One buffer => One 'data' field (pointer)
 Only accessible memory
 Content entirely specified by caps
 No control over memory access

● Problems
 Different content layout => new caps
 More fields => Override data (or subclass)



Memory management
● 0.10 Examples

 Stride
● video/x-raw-yuv-strided,stride=4096,...
● Incompatible with all existing video elements :(

 Non-contiguous planes
● GstVendorBufferIncompatible
● Also need specific caps to avoid other elements 

from prodding into (invalid/unknown) 'data' field
 <Insert the hack you had to do>

● => Incompatibility/Maintenance Hell



GStreamer GStreamer 
hacker reviewing hacker reviewing 

downstream downstream 
patchespatches



Memory management
● 1.0

 Memory separated from GstBuffer
 Caps separated from GstBuffer
 Generic Metadata system for GstBuffer



GstMeta
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GstMemory
● Abstraction of memory

 flags (read only, not sharable, ...)
 refcount (MT-safe)
 size, maxsize, alignment, offset

● Buffer can point to many GstMemory
● No direct access

 gst_memory_map() / _unmap()
 GST_MAP_READ, GST_MAP_WRITE
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GstAllocator
● GstAllocator provides GstMemory

 .alloc(), .mem_free()
 .mem_map(), .mem_unmap()
 .mem_copy()
 .mem_share()
 .mem_is_span()

● => Explicit memory control



Inter-plugin 
communication

● Problem:
 How do I communicate information to other 

plugins ?
 How do I do this in a transparent way ?

● 0.10:
 GstBuffer subclass and custom event

● See previous rant about that



GstMeta
● Describes properties of a GstBuffer 

content
 Video information (planes, strides,...)
 Extra buffer data (system context, ...)
 Processing information (crop, pan, ...)
 Anything you want really (but don't abuse it)

● query-able
● Can be ignored by elements



GstMeta
● C structure
● Stored in the GstBuffer memory
● gst_buffer_get_meta()
● gst_buffer_add_meta()



Ex : GstVideoMeta
struct _GstVideoMeta {
  GstMeta            meta;
  GstBuffer         *buffer;
  GstVideoFlags      flags;
  GstVideoFormat     format;
  gint               id;
  guint              width;
  guint              height;
  guint              n_planes;
  gsize              offset[GST_VIDEO_MAX_PLANES];
  gint               stride[GST_VIDEO_MAX_PLANES];
  gboolean (*map)    (GstVideoMeta *meta, guint plane,
                      GstMapInfo *info, gint *stride,
                      GstMapFlags flags);
  gboolean (*unmap)  (GstVideoMeta *meta, guint plane,
                      GstMapInfo *info);
};



GstMeta
● Inter-plugin communication
● Ways to create new use-case-/field-

specific APIs
● Stay compatible with other plugins



(Re)Negotiation
● 0.10

 Linked with buffer allocation (comes from 
downstream)

● Problems
 Slow
 Doesn't work when upstream provides the 

buffers (ex: v4l2src)



(Re)Negotiation
● In 1.0, negotiation is entirely 

decoupled from buffer allocation
● GST_QUERY_ALLOCATION
● GST_EVENT_RECONFIGURE



(Re)Negotiation
● GST_QUERY_ALLOCATION

 Upstream
● caps, need_pool

 Downstream
● Creates pool if needed
● Min/max buffers, alignment info, ...
● GstMeta handled
● GstAllocator

 Back to upstream who decides what to do



GstBufferPool
● Provides a pool of re-usable buffers
● Avoid free/alloc overhead
● Control allocation
● Shared between elements
● Generic API



(Re)Negotiation
● GST_EVENT_RECONFIGURE
● Sent upstream

 By elements when changes happen
 By pads when (un-)linked

● Faster response
● Handle-able by all elements



Impact of change
● Application porting minimal
● 'Naive' plugin porting minimal
● Use fast-path without disturbance
● Allow usage of your plugins/hardware 

in all use-cases
● “Throw away the hacks”

 Re-use existing features



Current status
● No more massive API/ABI breaks
● Freeze “really soon now” (tm) (c)

● All freedesktop modules ported
● Some external modules ported
● Applications ported

 Problem of 0.10/1.0 dual usage



Example :
TI PandaBoard 1.0

● Strided caps => GstVideoMeta
● Custom elements => gone
● Custom query => 

GST_QUERY_ALLOCATION
● V4l2sink works out of the box
● pvrvideosink in -bad
● gst-ducati ported



Questions ?
● http://gstreamer.freedesktop.org/

● Thank you !
● Bon appétit !

http://gstreamer.freedesktop.org/
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