

GStreamer 1.0

No longer compromise
flexibility for performance

Edward Hervey
Senior Multimedia Architect
edward@collabora.com
ELC 2012

GStreamer
● Open Source Multimedia Framework
● Set of libraries and plugins
● Direct Acyclic Graphs of elements
● API for plugins (to export features)
● API for applications

● “Flexibility and performance”

Gstreamer usage
● Desktop, embedded, server, TV, ...
● Playback, recording, real-time

communicaiton, transcoding,..
● Linux, Windows, MacOsX, iOS,

Android,..
● This talk is being recorded by

GStreamer (UbiCast)
shameless ad

GStreamer 0.10
● 0.10 series (0.10.0 Dec 5 2005)
● Used widely and continuously

improved
● More popular and solid than

anticipated

0.10 Limitations
● Performance issues
● Some use-case very cumbersome to

handle (hw-accel)
● Missing information
● Caps tightly coupled to buffer/memory
● Deprecated API

Enter GStreamer 1.0
● Talked about since 2007
● New challenges

 Embedded Platforms
 GPU
 Dynamic pipelines
 Re-negotiation

Goals
● Improve performance
● Allow more use-cases
● Avoid vendor 'hacks'
● Minimize downstream patches

GStreamer 1.0
● API/ABI cleanups and speedups
● Memory Management
● (Re)Negotiation
● Dynamic Pipelines
● Open the road to better performance
● More flexible/open API

Memory management
● 0.10

 One buffer => One 'data' field (pointer)
 Only accessible memory
 Content entirely specified by caps
 No control over memory access

● Problems
 Different content layout => new caps
 More fields => Override data (or subclass)

Memory management
● 0.10 Examples

 Stride
● video/x-raw-yuv-strided,stride=4096,...
● Incompatible with all existing video elements :(

 Non-contiguous planes
● GstVendorBufferIncompatible
● Also need specific caps to avoid other elements

from prodding into (invalid/unknown) 'data' field
 <Insert the hack you had to do>

● => Incompatibility/Maintenance Hell

GStreamer GStreamer
hacker reviewing hacker reviewing

downstream downstream
patchespatches

Memory management
● 1.0

 Memory separated from GstBuffer
 Caps separated from GstBuffer
 Generic Metadata system for GstBuffer

GstMeta

GstMemory

GstBuffer

GstBuffer

pts
dts

duration
offset GstMemory

GstMeta

GstMemory
● Abstraction of memory

 flags (read only, not sharable, ...)
 refcount (MT-safe)
 size, maxsize, alignment, offset

● Buffer can point to many GstMemory
● No direct access

 gst_memory_map() / _unmap()
 GST_MAP_READ, GST_MAP_WRITE

GstMemory

GstMemory

System
memory

GPU
memory

DMA
buf

DRM
memory

offline
Memory ?

GstAllocator
● GstAllocator provides GstMemory

 .alloc(), .mem_free()
 .mem_map(), .mem_unmap()
 .mem_copy()
 .mem_share()
 .mem_is_span()

● => Explicit memory control

Inter-plugin
communication

● Problem:
 How do I communicate information to other

plugins ?
 How do I do this in a transparent way ?

● 0.10:
 GstBuffer subclass and custom event

● See previous rant about that

GstMeta
● Describes properties of a GstBuffer

content
 Video information (planes, strides,...)
 Extra buffer data (system context, ...)
 Processing information (crop, pan, ...)
 Anything you want really (but don't abuse it)

● query-able
● Can be ignored by elements

GstMeta
● C structure
● Stored in the GstBuffer memory
● gst_buffer_get_meta()
● gst_buffer_add_meta()

Ex : GstVideoMeta
struct _GstVideoMeta {
 GstMeta meta;
 GstBuffer *buffer;
 GstVideoFlags flags;
 GstVideoFormat format;
 gint id;
 guint width;
 guint height;
 guint n_planes;
 gsize offset[GST_VIDEO_MAX_PLANES];
 gint stride[GST_VIDEO_MAX_PLANES];
 gboolean (*map) (GstVideoMeta *meta, guint plane,
 GstMapInfo *info, gint *stride,
 GstMapFlags flags);
 gboolean (*unmap) (GstVideoMeta *meta, guint plane,
 GstMapInfo *info);
};

GstMeta
● Inter-plugin communication
● Ways to create new use-case-/field-

specific APIs
● Stay compatible with other plugins

(Re)Negotiation
● 0.10

 Linked with buffer allocation (comes from
downstream)

● Problems
 Slow
 Doesn't work when upstream provides the

buffers (ex: v4l2src)

(Re)Negotiation
● In 1.0, negotiation is entirely

decoupled from buffer allocation
● GST_QUERY_ALLOCATION
● GST_EVENT_RECONFIGURE

(Re)Negotiation
● GST_QUERY_ALLOCATION

 Upstream
● caps, need_pool

 Downstream
● Creates pool if needed
● Min/max buffers, alignment info, ...
● GstMeta handled
● GstAllocator

 Back to upstream who decides what to do

GstBufferPool
● Provides a pool of re-usable buffers
● Avoid free/alloc overhead
● Control allocation
● Shared between elements
● Generic API

(Re)Negotiation
● GST_EVENT_RECONFIGURE
● Sent upstream

 By elements when changes happen
 By pads when (un-)linked

● Faster response
● Handle-able by all elements

Impact of change
● Application porting minimal
● 'Naive' plugin porting minimal
● Use fast-path without disturbance
● Allow usage of your plugins/hardware

in all use-cases
● “Throw away the hacks”

 Re-use existing features

Current status
● No more massive API/ABI breaks
● Freeze “really soon now” (tm) (c)

● All freedesktop modules ported
● Some external modules ported
● Applications ported

 Problem of 0.10/1.0 dual usage

Example :
TI PandaBoard 1.0

● Strided caps => GstVideoMeta
● Custom elements => gone
● Custom query =>

GST_QUERY_ALLOCATION
● V4l2sink works out of the box
● pvrvideosink in -bad
● gst-ducati ported

Questions ?
● http://gstreamer.freedesktop.org/

● Thank you !
● Bon appétit !

http://gstreamer.freedesktop.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

