
Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Go Tutorial

Ian Lance Taylor

GCC Summit, October 27, 2010

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Go

I Go is a new experimental general purpose programming
language. Main developers are:

I Russ Cox
I Robert Griesemer
I Rob Pike
I Ian Lance Taylor
I Ken Thompson

I It was released as free software in November 2009.
I http://golang.org/
I This talk is about the language.

http://golang.org/

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Talk

I’m not going to cover the basics of the language. The
language is not large and you can all learn it easily.

1. Why introduce a new language?
2. Discuss some of the more unusual aspects of the

language.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.

I Go provides concurrent threads of execution as part of
the language.

I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.

I Go’s package system minimizes the effect of
dependencies.

I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.

I Go provides concurrent threads of execution as part of
the language.

I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.

I Go’s package system minimizes the effect of
dependencies.

I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.

I Go provides concurrent threads of execution as part of
the language.

I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.

I Go’s package system minimizes the effect of
dependencies.

I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.
I Go provides concurrent threads of execution as part of

the language.
I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.

I Go’s package system minimizes the effect of
dependencies.

I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.
I Go provides concurrent threads of execution as part of

the language.
I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.

I Go’s package system minimizes the effect of
dependencies.

I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.
I Go provides concurrent threads of execution as part of

the language.
I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.
I Go’s package system minimizes the effect of

dependencies.
I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

What problems does Go solve?
I Types get in the way too much.

I Go has a lightweight typing system, and many types
need not be written explicitly.

I Multi-core is an opportunity.
I Go provides concurrent threads of execution as part of

the language.
I Concurrency is very hard to get right.

I Go provides channels for reliable communication: a
CSP-like model.

I Computers are fast but building programs is slow.
I Go’s package system minimizes the effect of

dependencies.
I Programming is less fun.

I The language is small and does not get in your way.

Go is an attempt to solve these problems.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Why a new language?

The problems are inherent to existing languages.

New libraries means moving in the wrong direction. Adding
to something complex can only make it more complex. Go
aims for simplicity.

Go is an attempt to start over. Nothing has been added to
Go unless there was a clear advantage for it discovered while
writing real programs.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Performance

The performance of the best Go code is unlikely to match
the performance of the best C++ code.

I Go is safe, with array bounds checking and no pointer
arithmetic.

I Go is garbage collected.
I Go does not have templates and thus does not have

inline template specializations.
I Some form of generics are a possible future language

extension.

Gccgo does beat gcc on a few single-threaded benchmarks,
and is generally competitive on most. Gccgo is significantly
faster on some benchmarks where Go makes it easy to
parallelize the problem.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Hello, Go

package main

import "fmt"

func main() {
fmt.Print("Hello, 世界\n")

}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Slices
// A s l i c e type has no l e n g t h .
type Ar r a yO f I n t [1 0] i n t
type S l i c e O f I n t [] i n t

// A s l i c e e x p r e s s i o n makes a s l i c e .
var v = Ar r a yO f I n t {1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10}
var s = v [2 : 5]
// Index l i k e an a r r a y .
var x = s [0] // x == 3

// S l i c e s have a l e n g t h and a c a p a c i t y .
// l e n (s) == 5 ; cap (s) == 8
// S l i c e i nd ex r ange s from 0 to l e n (s) .

// R e s l i c e a s l i c e to make i t l a r g e r .
var s2 = s [0 : 8]

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Methods
Any type can have methods.
// Uppercase names a r e p u b l i c .
type Po in t s t ruc t {

X, Y f l o a t
}
func (p ∗Po in t) Abs () f l o a t {

return math . Sqr t (p .X∗p .X + p .Y∗p .Y)
}

type Po l a r s t ruc t {
R, Theta f l o a t

}
func (p Po l a r) Abs () f l o a t {

return p .R
}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Interfaces 1
An interface type is a list of methods. An interface value
may hold any value whose type implements those methods.
type Abser i n t e r f a c e {

Abs () f l o a t
}
func f () {

p o i n t := &Po in t {1 , 2}
var a Abser = p o i n t
// S t a t i c type o f a i s (a lways) Abser .
// Dynamic type o f a i s (now) Po in t .
fmt . P r i n t (a . Abs ())
p o l a r := Po l a r {3 , 4}
a = p o l a r
// Dynamic type o f a i s Po l a r .
fmt . P r i n t (a . Abs ())

}

No need to explicitly declare that Point satisfies Abser.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Interfaces 2

The io package defines the io.Writer interface.
type Wri t e r i n t e r f a c e {

Write (p [] by te) (n i n t , e r r os . E r r o r)
}

Any type with a Write method with that signature satisfies
the io.Writer interface. Any function that needs to write
something can take a io.Writer as a parameter.

E.g., fmt.Fprintf takes an io.Writer parameter.

E.g., bufio.NewWriter takes an io.Writer and returns a
buffered type that satisfies io.Writer.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Interfaces 3

I A value of one interface type may be converted to
another interface type.

I The conversion succeeds if the dynamic type—the type
of the value stored in the interface—supports all the
methods of the destination interface.

I The conversion may fail at runtime with a panic.
I To dynamically test without panicking, use the “comma

ok” form.
a , ok := Abser (p)
i f ok {

// a i s not n i l .
} e l s e {

// a i s n i l .
}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Goroutines

I Goroutines are concurrent execution threads.
I In gccgo there is one goroutine per pthread; in gc

goroutines are multiplexed onto operating system
threads.

I The go statement starts a goroutine.

func f () {
go expens i v eComputa t i on ()
anothe rExpens i v eComputa t i on ()

}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Channels 1

To communicate with a goroutine, use a channel.
func computeAndSend (ch chan i n t) {

ch <− expens i v eComputa t i on ()
}

func f () {
ch := make (chan i n t)
go computeAndSend (ch)
v2 := anothe rExpens i veComputa t i on ()
v1 := <−ch
fmt . P r i n t l n (v1 , v2)

}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Channels 2

I Channels are both a communication mechanism and a
synchronization mechanism.

I A channel write is a release operation on all memory
stores before the write.

I A channel read is an acquire operation for all memory
reads following the read.

I Go slogan: Do not communicate by sharing memory;
instead, share memory by communicating.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

A multiplexed server

type Request s t ruc t {
a , b i n t
// r e p l y channel
r e p l y c chan i n t

}

type binOp func (a , b i n t) i n t

func run (op binOp , req ∗Request) {
req . r e p l y c <− op(req . a , req . b)

}

func s e r v e r (op binOp , s e r v i c e chan ∗Request) {
f o r {

req := <−s e r v i c e // reques t s a r r i v e here
go run (op , req) // don ’ t wait f o r op

}
}

func Sta r tSe rve r (op binOp) chan ∗Request {
reqChan := make(chan ∗Request)
go s e r v e r (op , reqChan)
return reqChan

}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

The client

// S t a r t s e r v e r ; r e c e i v e a channe l on which
// to send r e q u e s t s .
s e r v e r := S t a r t S e r v e r (

func (a , b i n t) i n t { return a+b})

// Crea te r e q u e s t s
req1 := &Request {23 ,45 , make (chan i n t)}
r eq2 := &Request{−17,1<<4, make (chan i n t)}

// Send them i n a r b i t r a r y o r d e r
s e r v e r <− r eq
s e r v e r <− r eq2

// Wait f o r the answers i n a r b i t r a r y o r d e r
fmt . P r i n t f (” Answer2 : %d\n ” , <−r eq2 . r e p l y c)
fmt . P r i n t f (” Answer1 : %d\n ” , <−r eq1 . r e p l y c)

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Defer

I The defer statement executes a call when the function
returns.

I Deferred calls are executed in LIFO order.
I The defer statement implements a finally clause,

but it is dynamic rather than syntactic.

func p r i n t I n t (i i n t) {
f o r i != 0 {

defer fmt . P r i n t (i % 10)
i /= 10

}
}

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Panic and recover

I The panic function throws an exception.
I Runtime errors such as interface conversion failures call

panic with a value that satisfies the runtime.Error
interface.

I A panic unwinds the stack, executing deferred
functions.

I The recover function stops the stack unwind and
returns the value passed to panic.

I If recover is called when no panic is in progress,
recover returns nil.

I If a panic reaches the top of a goroutine stack without
being recovered, it aborts the program.

I The recover function implements a catch clause, but
it is dynamic rather than syntactic.

Go Tutorial

Ian Lance Taylor

Introduction

Why?

Language

Panic and recover example

func S a f e D i v i d e (x , y i n t)
(r e t i n t , e r r o r s t r i n g) {

defer func () {
i f e := r e c o v e r () ; e != n i l {

i f y == 0 {
e r r o r = ” d i v i s i o n by z e r o ”

} e l s e i f y == −1 {
e r r o r = ” d i v i s i o n o v e r f l o w ”

} e l s e {
pan i c (e)

}
}

} ()
r e t = x / y

}

	Introduction
	Why?
	Language

