Device Provisioning and OTA updates

Mark.gross@intel.com
ABS2011


mailto:Mark.gross@intel.com

Pre-ramble

* Pre-OS and provisioning related requirements.
* What's available from AOSP
* \What we've been doing

| will not say much about the OTA agent you'll need
to get that from your carrier.

* | am not an expert. But ask questions anyway.

* This slide deck is not really a good reference
» Lots of detail not covered here



Pre OS and Provisioning requirements



Device Update

Storage formating / partitioning
FW

Kernel + initrd

System partition

Modem

Security stuff

update of recovery

Boot loader



Manufacturing

Loading Manufacturing and test payload
per device data to store

« 3g calibration
* GGps calibration
« MAC ID's

e Device unique serial numbers and keys
Speed
Ease of use for line workers



Development

 OS updates

« Kernel / Drives
¢ System
e Fast turn around time

e Hands free automation



Reliability

Error logging and reporting
* Not really so great today.
Robustness against brickage

Payload / Provisioning hand shake
Battery + charger awareness



Other stuff

Packaging

Signing of update packages

Partial updates

Versioning

Carrier dependencies

Ul

Roll back

Security

Lots of stuff I'm not dealing with yet.



Device provisioning and update support provided
to some extent by AOSP



Fastboot client

* Built as part of the host tools.
* Walks usb stack looking for fastboot gadgets.
» System/core/fastboot



Fastboot target

* bootable/bootloader/lagacy/*
e fastboot protocal.txt

o git://android.git.kernel.org/kernel/lk.git
* App/aboot



Fastboot gaps

* “popping” error logging from target
 Add hock commands

* Security risk
 Download speed



Provisioning / Recovery

Bootable/recovery.git

e Tools/ota
 Recovery.c

Recovery

» Platform/recovery.git
OTAProvisioning.git < empty
MasterClearReciver.java
Recovery.java



Handshake between OS's

 Documented in comments in Recovery.c
« Commands
 Logs
* |Intents

 Reboot reasons



Provisioning OS
(aka Intel's recovery image)



Provisioning OS

» Started off as a adb_gadget kernel driver hack
» Used aboot from Ik.git

* Used to be just kboot with a fastboot gadget +
aboot daemon

* Evolving into a “recovery OS” based on kboot
(without kexec) for x86.

* Deals with platform specific details.



Provisioning OS

» Started off using tarball packaging.
* Moving to loop back iso's for packaging
* Signed packages

» Standard update processing for each type of
update

 FW, kernel/initrd, system, Modem
» Device specific partitioning
o Similar to “"dual booting”



Hardening

e Device Provisioning is a common attack vector
for rooting devices.

e Remove shell

* Limit operations to only trusted ones.



MRST/MFLD OSIP

e similar to menu.lst

* Array of OSII values each OSI| can be a
loadable boot image

 Manipulate OSI| array to control what image
boots.



UMG specific detalil

FW boots multiple targets based on search
path of a data structure called the OSIP.

Default osii to boot is the Main OS (android or
manufacturing)

Direct OSIP manipulation enables boot into
provisioning OS

Provisioning OS can re-write the main OS
(kernel + initial ram disk)

Re-writing OSIP defaults boot to Main OS after
provisioning is finished with its processing.




Questions?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

