

Device Provisioning and OTA updates

Mark.gross@intel.com
ABS2011

mailto:Mark.gross@intel.com

Pre-ramble

● Pre-OS and provisioning related requirements.
● What's available from AOSP
● What we've been doing

● I will not say much about the OTA agent you'll need
to get that from your carrier.

● I am not an expert. But ask questions anyway.
● This slide deck is not really a good reference
● Lots of detail not covered here

Pre OS and Provisioning requirements

Device Update

● Storage formating / partitioning
● FW
● Kernel + initrd
● System partition
● Modem
● Security stuff
● update of recovery
● Boot loader

Manufacturing

● Loading Manufacturing and test payload
● per device data to store

● 3g calibration
● Gps calibration
● MAC ID's
● Device unique serial numbers and keys

● Speed
● Ease of use for line workers

Development

● OS updates
● Kernel / Drives
● System

● Fast turn around time
● Hands free automation

Reliability

● Error logging and reporting
● Not really so great today.

● Robustness against brickage
● Payload / Provisioning hand shake
● Battery + charger awareness

Other stuff

● Packaging

● Signing of update packages

● Partial updates

● Versioning

● Carrier dependencies

● UI

● Roll back

● Security

● Lots of stuff I'm not dealing with yet.

Device provisioning and update support provided
to some extent by AOSP

Fastboot client

● Built as part of the host tools.
● Walks usb stack looking for fastboot gadgets.
● System/core/fastboot

Fastboot target

● bootable/bootloader/lagacy/*
● fastboot_protocal.txt

● git://android.git.kernel.org/kernel/lk.git
● App/aboot

●

Fastboot gaps

● “popping” error logging from target
● Add hock commands

● Security risk

● Download speed

Provisioning / Recovery

● Bootable/recovery.git
● Tools/ota
● Recovery.c

● Recovery
● Platform/recovery.git

● OTAProvisioning.git ← empty
● MasterClearReciver.java
● Recovery.java

Handshake between OS's

● Documented in comments in Recovery.c
● Commands
● Logs
● Intents

● Reboot reasons

Provisioning OS
(aka Intel's recovery image)

Provisioning OS

● Started off as a adb_gadget kernel driver hack
● Used aboot from lk.git
● Used to be just kboot with a fastboot gadget +

aboot daemon
● Evolving into a “recovery OS” based on kboot

(without kexec) for x86.
● Deals with platform specific details.
●

Provisioning OS

● Started off using tarball packaging.
● Moving to loop back iso's for packaging
● Signed packages
● Standard update processing for each type of

update
● FW, kernel/initrd, system, Modem

● Device specific partitioning
● Similar to “dual booting”

Hardening

● Device Provisioning is a common attack vector
for rooting devices.

● Remove shell
● Limit operations to only trusted ones.
●

MRST/MFLD OSIP

● similar to menu.lst
● Array of OSII values each OSII can be a

loadable boot image
● Manipulate OSII array to control what image

boots.

UMG specific detail

● FW boots multiple targets based on search
path of a data structure called the OSIP.

● Default osii to boot is the Main OS (android or
manufacturing)

● Direct OSIP manipulation enables boot into
provisioning OS

● Provisioning OS can re-write the main OS
(kernel + initial ram disk)

● Re-writing OSIP defaults boot to Main OS after
provisioning is finished with its processing.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

