
Kernel Support for 4096 Processors
Mike Travis <travis@sgi.com>

mailto:travis@sgi.com

Page 2

Disclaimer

• This presentation contains forward-looking statements regarding the SGI Altix® server family and roadmap, other SGI® technologies, and
third-party technologies that are subject to risks and uncertainties. These risks and uncertainties could cause actual results to differ materially
from those described in such statements. The viewer is cautioned not to rely unduly on these forward-looking statements, which are not a
guarantee of future or current performance. Such risks and uncertainties include long-term program commitments, the performance of third
parties, the sustained performance of current and future products, financing risks, the impact of competitive markets, the ability to integrate
and support a complex technology solution involving multiple providers and users, the acceptance of applicable technologies by markets and
customers, and other risks. These forward-looking statements are subject to risks and uncertainties as set forth in the company's most
recent SEC reports on Form 10-Q, 8K and Form 10-K. Silicon Graphics is under no obligation to publicly update or revise any forward-
looking statements, whether to reflect new information, future events or otherwise.

•

• ©2009 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, SGI Altix, the SGI logo and the SGI cube are registered trademarks.
SGI ProPack, Performance Co-Pilot, and Innovation for Results are trademarks of Silicon Graphics, Inc., in the United States and/or other
countries worldwide. Linux is a registered trademark of Linus Torvalds in several countries. Linux penguin logo created by Larry Ewing.
Itanium and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries
trademarks. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc., in the United States and
other countries. Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. All
other trademarks mentioned herein are the property of their respective owners. Intel and the Intel logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

•

• Product plans, descriptions, and dates are estimates only and subject to change without notice. SGI may choose not to announce or make
generally available any products or programs discussed in this presentation. Therefore, you should not make changes in your business
operations on the basis of the information presented here.

• Carlsbad, Dixon, Ultraviolet, Santa Fe, Oro Valley, Chama and Taos are internal project code names.

•

Page 3

Overview

• Why 4096 cpus?: sneak preview of “UV”
• Supporting UV in Linux Kernel
• Stack Overflow: early work
• New cpumask API
• Future considerations
• Reducing wasted static memory
• Questions

Page 4

SGI® Project Ultraviolet
Architecture Highlights
• Scalability

• 4096 cpu threads in single x86-64 system
• Memory to 16TB in one OS image
• Direct user access to 4PB of memory using the GRU

• Aggregate IO per system to over 1 TB/s

• Hardware-enabled Performance and Reliability
• Advanced fault detection, prevention, containment
• Enhanced monitoring and serviceability
• Special features accelerate compute or data-intensive workloads

• Low TCO (total cost of ownership)
• x86 64 and Linux economics
• Industry-leading rack-level energy efficiency
• Easy to deploy, develop, administer and productively use

Page 5

UV Technologies

• UV Node Controller
– Supports data-efficient scale, reliability and performance

• UV NUMAlink® 5 Interconnect

– Very high BW/low latency system fabric

• SGI’s Advanced Blade Packaging
– SMP in a blade form factor
– Power efficient and flexible

– Advanced water cooling solutions available for large systems

Page 6

Project Ultraviolet Product Design

•Bladed Node Package

•SMP Architecture

•Many configuration Options

•Unmatched Scalability

Page 7

Project Ultraviolet: Architecture Limits

• Blade
– 2 CPU Sockets (16 cores, 32 threads, 128GB w/8GB DIMMS)

• IRU
– 16 Blades (32s, 256c, 512t, 2TB)

• Rack
– 2 IRU's (64s, 512c, 1024t, 4TB)

• SSI System
– 128 Blades (256s, 2048c, 4096t, 16TB [current X86_64 limit])

• System (NUMAlinked partitions)
– 1024 Blades (2048s, 16384c, 32768t, 8PB)

Page 8

Supporting UV in Linux Kernel

• Large installations require “standardized” linux
distros that are verified for both quality and
security. Most will not rebuild the kernel using a
special configuration.

• This requires CONFIG_NR_CPUS = 4096 in the
distro build even for 2 cpu systems.

• How to support this large configuration while
minimizing the impact to small systems.

Page 9

Minimizing Impact of NR_CPUS=4096

Largest Resource Hogs:

• cpumask_t's on the stack
- cpumask_t arguments passed to functions
- temporary cpumask_t variables
- most annoying because this causes stack overflow panics

• Static arrays sized by “NR_CPUS”

• Static structures with embedded cpumask_t's
- consumes static memory that's not being used

Page 10

Stack overflow: the early days

• Add alternate functions that take cpumask_t pointers.
Ex: set_cpus_allowed → set_cpus_allowed_ptr

• cpumask_of_cpu() heavily used, replaced with
cpumask_of_cpu_map[]

• Add functions that removed need for temporary cpumask_t
variables.

Ex: cpu_mask_to_apicid_and() in struct apic

• Add dynamically allocated cpumask_t's
Ex: build_sched_domain() had 7 temp masks!

Page 11

Stack Overflow: the reality

• But... code contributions from others resulted in
cpumask_t's being put back on the stack.

• This resulted in what Rusty called the whole
process as the “whack a mole” approach. :-)

• “There must be a better way”...

Page 12

Solution: New cpumask API

• Introduce parallel cpumask API to eventually
remove the “cpumask_t” typedef.

• Always reference cpumasks via pointers (const
pointer when possible.)

• Provide facility to dynamically allocate cpumasks
when NR_CPUS is large, and declare static
cpumasks when NR_CPUS is small.

Page 13

New cpumask API: basic philosophy

• Use “struct cpumask” instead of “cpumask_t”

• Explicitly pass pointers to cpumasks (const
wherever possible.)
– cpus_or → cpumask_or, etc.

• Limit cpumask traversal to “nr_cpu_ids”
– for_each_cpu_mask() → for_each_cpu()

• Afterwards >= nr_cpu_ids not == NR_CPUS!

Page 14

New cpumask API: temporary cpumasks

• cpumask_var_t:
– struct cpumask[1], OR

– struct cpumask * (CPUMASK_OFFSTACK)

• alloc_cpumask_var(&var, gfp)
– Nop unless CPUMASK_OFFSTACK

• Only use for decls. Always pass (const) struct
cpumask *.

Page 15

New cpumask API: helper functions

• Pointer (often const!) versions of old friends:
– cpumask_of_cpu() → cpumask_of()

– cpu_online_map → cpu_online_mask

• Accessors for now-const masks:
– set_cpu_possible(int, bool)

– init_cpu_possible(const struct cpumask *)

• New convenience iterators:
– cpumask_any_and(a,b)

– cpumask_any_but(a, cpu)

– for_each_cpu_and(a, b)

• work_on_cpu() instead of mugging current->cpus_allowed

Page 16

New cpumask API: Future Considerations

• 2.6.30 aim is to remove all cpumasks and old
operators from everywhere on x86.

• alloc_cpumask_var will only allocate nr_cpu_ids bits,
not NR_CPUS
– Means you can't use old iterators on them!

– (Currently zeroes extra bits to be sure).

• struct cpumask will be undefined if
CONFIG_CPUMASK_OFFSTACK=n

– Stops obvious on-stack declaration

– Stops assignment

– Requires complete cpumask_var_t conversion.

Page 17

Reducing wasted static memory

• Remove arrays sized by “NR_CPUS”
– Use per_cpu variables where possible.

– Use alloc_percpu which only allocates enough
memory for possible cpus.

– Build static array in .init.data section and copy to a
dynamically allocated array based on “nr_cpu_ids”.

– Dynamically allocate IRQ's based on need.

Page 18

Questions?

Page 19

Thanks!

• Many thanks to Rusty Russell for his help and guidance
during this cpumask development (and letting me “cut
and paste” from his LCA slides!)
More history of the evolution of the new cpumask API
can be found at:
– http://ozlabs.org/~rusty/index.cgi/tech/2009-01-07

• Thanks to Christoph Lameter for his help in getting me
“up to speed” in interacting with the Linux kernel
community.

• And finally thanks to Ingo, Yinghai, Andrew and others
for their critical reviews and often very clever solutions.

http://ozlabs.org/~rusty/index.cgi/tech/2009-01-07

	Slide 1
	Slide 2
	Slide 3
	SGI® Project Ultraviolet Architecture Highlights
	UV Technologies
	Project Ultraviolet Product Design
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

