
Dynamic Large Pages

Dave Hansen
IBM Linux Technology Center

The Linux Foundation Confidential 2

Why Large Pages?

Fewer objects to manage
Fit more objects in CPU caches
Per-page operations become cheaper
Per-page structures become
“smaller”

Any cache miss is increasingly
expensive

They are “special” on Linux

The Linux Foundation Confidential 3

“Old” Workloads

Performance is critical
Grew out of HPC/DB space
Large Memory Footprint
Page-level handling (faults, etc...)
Willing to work around usability
mlock() tolerance
“Custom” Applications

The Linux Foundation Confidential 4

State of the Art
Interfaces: fs / SHM / libhugetlbfs
Faulting replaces preallocation
COW support for private at fork()
Reservations
Quota Support
NUMA Policy Awareness
Lumpy Reclaim
Gigantic Pages

The Linux Foundation Confidential 5

Linux VM Support

NUMA
Delayed allocation- better locality
Round-robin pool population
Deterministic COW support

 Needed for MAP_PRIVATE support
 MAP_PRIVATE needed for transparent

replacement

Lumpy Reclaim

Admin Interfaces
• Display

/proc/meminfo (incomplete)
/sys/kernel/mm/hugepages

• Configuration
hugepages=
/proc/sys/vm/nr_hugepages (r/w)

 Not 100% dependable
kernelcore=

• hugeadm – wrapper for all of these

The Linux Foundation Confidential 7

Multiple HW Sizes
ppc64: 4k, 64k, 16M, 16GB*
x86: 4k, 2M/4M, 1GB*
ia64: everything
parisc: 4M
s390: 4k, 1M
sh: 64k, 256k, 1M, 4M, 64M, 512M
sparc: 64k, 512k, 4M

* Gigantic Page size

Base page size option

The Linux Foundation Confidential 8

Gigantic Pages

amd64: 1GB
powerpc: 16GB
Early allocation is required

before power on – ppc
boot-time – x86

Separate pools from regular page
allocation and other huge pages

The Linux Foundation Confidential 9

Multi-size support

Compile time selection?
Gigantic mean no one-size-fits-all
approach can possibly work

sysfs interfaces
enumerate/allocate
Permit multiple mounts
Separate allocation pools

The Linux Foundation Confidential 10

Virtualization - KVM

Large memory use
mlock()
Custom app, willing to modify
Performance concerns...
TLB miss 5x cost, with new h/w
Perfect huge page application!

The Linux Foundation Confidential 11

Caveats
Fragmentation
Locked into memory – no reclaim
Hardware must be dedicated
Separate, discrete interfaces
Permissions
Amplification of bad NUMA
placement decisions

Architecture TLB weakness

The Linux Foundation Confidential 12

Candidate Users

• Large, contiguous memory users
• Poor temporal or spatial locality
• Bottlenecks on fault speed
• Pagetable size overhead

Large shared mapping
• Pagetable cache footprint

The Linux Foundation Confidential 13

Application Work

• Using SHM? Add SHM_HUGETLB
• libhugetlbfs

Drop-in replacement for
malloc()/shmget()

Works for complex apps like firefox!
Link normally or use LD_PRELOAD
Executables in huge pages
Administraton with hugeadm

The Linux Foundation Confidential 14

Future Work

• User Stacks
• Transparent promotion/demotion
• Continuing improvements in page
reclamation

• Power management / Memory
Hotplug

• libhugetlbfs
documentation/usability

The Linux Foundation Confidential 15

Further Reading

 Cost of Pagetable lookups in virtual machines:

 http://www.amd64.org/fileadmin/user_upload/pub/p26-bhargava.pdf

 http://sourceforge.net/projects/libhugetlbfs/

 http://www.ibm.com/developerworks/wikis/display/LinuxP/libhugetlbfs+FAQs

http://www.amd64.org/fileadmin/user_upload/pub/p26-bhargava.pdf
http://sourceforge.net/projects/libhugetlbfs/
file:///home/dave/ltc/presentations/lfpres/
file:///home/dave/ltc/presentations/lfpres/

04/09/09

1

Click to add title

Dynamic Large Pages

Dave Hansen
IBM Linux Technology Center

04/09/09

2

The Linux Foundation Confidential 2The Linux Foundation Confidential 2

Why Large Pages?

Fewer objects to manage
Fit more objects in CPU caches
Per-page operations become cheaper
Per-page structures become
“smaller”

Any cache miss is increasingly
expensive

They are “special” on Linux

It costs the same number of cpu cycles more or less to do a large page
minor fault or a small page one. But, the benefits of a large page fault
are much higher.

smaller in terms of percentage. A fixed N-byte object becomes relatively
much smaller when the M-byte page it represents gets larger

'expensive' in terms of performance. CPUs are bottlenecked on memory
bandwidth and caches are continuing to increase in their importance.

04/09/09

3

The Linux Foundation Confidential 3The Linux Foundation Confidential 3

“Old” Workloads

Performance is critical
Grew out of HPC/DB space
Large Memory Footprint
Page-level handling (faults, etc...)
Willing to work around usability
mlock() tolerance
“Custom” Applications

There are classic workloads that have used large pages not necessarily
the ones where they best fit

04/09/09

4

The Linux Foundation Confidential 4The Linux Foundation Confidential 4

State of the Art
Interfaces: fs / SHM / libhugetlbfs
Faulting replaces preallocation
COW support for private at fork()
Reservations
Quota Support
NUMA Policy Awareness
Lumpy Reclaim
Gigantic Pages

04/09/09

5

The Linux Foundation Confidential 5The Linux Foundation Confidential 5

Linux VM Support

NUMA
Delayed allocation- better locality
Round-robin pool population
Deterministic COW support

 Needed for MAP_PRIVATE support
 MAP_PRIVATE needed for transparent

replacement

Lumpy Reclaim

COW usage used to give random app behavior. Now we can at least
guarantee that parents will keep their huge pages and children have an
opportunity to to get their own copies, too.

The Linux Foundation Confidential 6

Admin Interfaces
• Display

/proc/meminfo (incomplete)
/sys/kernel/mm/hugepages

• Configuration
hugepages=
/proc/sys/vm/nr_hugepages (r/w)

 Not 100% dependable
kernelcore=

• hugeadm – wrapper for all of these

04/09/09

7

The Linux Foundation Confidential 7The Linux Foundation Confidential 7

Multiple HW Sizes
ppc64: 4k, 64k, 16M, 16GB*
x86: 4k, 2M/4M, 1GB*
ia64: everything
parisc: 4M
s390: 4k, 1M
sh: 64k, 256k, 1M, 4M, 64M, 512M
sparc: 64k, 512k, 4M

* Gigantic Page size

Base page size option

just an indicator of why we need hstates so badly

04/09/09

8

The Linux Foundation Confidential 8The Linux Foundation Confidential 8

Gigantic Pages

amd64: 1GB
powerpc: 16GB
Early allocation is required

before power on – ppc
boot-time – x86

Separate pools from regular page
allocation and other huge pages

just an indicator of why we need hstates so badly

04/09/09

9

The Linux Foundation Confidential 9The Linux Foundation Confidential 9

Multi-size support

Compile time selection?
Gigantic mean no one-size-fits-all
approach can possibly work

sysfs interfaces
enumerate/allocate
Permit multiple mounts
Separate allocation pools

04/09/09

10

The Linux Foundation Confidential 10The Linux Foundation Confidential 10

Virtualization - KVM

Large memory use
mlock()
Custom app, willing to modify
Performance concerns...
TLB miss 5x cost, with new h/w
Perfect huge page application!

04/09/09

11

The Linux Foundation Confidential 11The Linux Foundation Confidential 11

Caveats
Fragmentation
Locked into memory – no reclaim
Hardware must be dedicated
Separate, discrete interfaces
Permissions
Amplification of bad NUMA
placement decisions

Architecture TLB weakness

04/09/09

12

The Linux Foundation Confidential 12The Linux Foundation Confidential 12

Candidate Users

• Large, contiguous memory users
• Poor temporal or spatial locality
• Bottlenecks on fault speed
• Pagetable size overhead

Large shared mapping
• Pagetable cache footprint

Temporal locality

– Tendency to re-reference memory

– Sparse accesses imply low temporal locality

– Use-once (e.g. STREAM) has low locality

– Tree elimination solves have higher locality

• Spacial locality

– Tendency to reference nearby memory

– Random access low locality

– Cache blocking, higher spacial locality

04/09/09

13

The Linux Foundation Confidential 13The Linux Foundation Confidential 13

Application Work

• Using SHM? Add SHM_HUGETLB
• libhugetlbfs

Drop-in replacement for
malloc()/shmget()

Works for complex apps like firefox!
Link normally or use LD_PRELOAD
Executables in huge pages
Administraton with hugeadm

04/09/09

14

The Linux Foundation Confidential 14The Linux Foundation Confidential 14

Future Work

• User Stacks
• Transparent promotion/demotion
• Continuing improvements in page
reclamation

• Power management / Memory
Hotplug

• libhugetlbfs
documentation/usability

04/09/09

15

The Linux Foundation Confidential 15The Linux Foundation Confidential 15

Further Reading

 Cost of Pagetable lookups in virtual machines:

 http://www.amd64.org/fileadmin/user_upload/pub/p26-bhargava.pdf

 http://sourceforge.net/projects/libhugetlbfs/

 http://www.ibm.com/developerworks/wikis/display/LinuxP/libhugetlbfs+FAQs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

