

1Tristan Lelong - ELC 2013

Debugging for production systems

February, 2013

Tristan Lelong
Adeneo Embedded

tlelong@adeneo-embedded.com

Embedded Linux Conference 2013

2Tristan Lelong - ELC 2013

Who am I?

● Software engineer at Adeneo Embedded
(Bellevue, WA)
● Systems:

– GNU/Linux
– Android

● Main activities:
– BSP adaptation
– Driver development
– System integration

3Tristan Lelong - ELC 2013

Production systems constraints

● Production systems have limited resources
● Production systems are secured
● Production systems are not connected
● Production systems are not accessible

4Tristan Lelong - ELC 2013

Production systems constraints

● Production systems have limited resources
● Limited CPU

– Cannot do some heavy processing
● Limited RAM

– Cannot process huge files
● Limited ROM

– Cannot store all symbols, debug tools

5Tristan Lelong - ELC 2013

Production systems constraints

● Production systems are secured
● No external access to the filesystem
● No automatic information reporting
● No tools to perform in-depth analysis

6Tristan Lelong - ELC 2013

Production systems constraints

● Production systems are not connected
● No internet connection to send reports
● No link to do remote debugging

7Tristan Lelong - ELC 2013

Production systems constraints

● Production systems are not accessible
● No UI for end users
● Not in the developers' hands

8Tristan Lelong - ELC 2013

Production systems constraints

● Some more constraints
● A production system is not only “your software”

– No full knowledge of all components
– No control on other components
– Build systems tend to give more control

● ...

9Tristan Lelong - ELC 2013

Purpose of this presentation

● Tim Bird did a very good presentation about
debugging in production systems during ELC
2012 (Appropriate Crash Handling in Linux)

● This presentation focuses on
● The same subject
● Other key points
● Further information

10Tristan Lelong - ELC 2013

Purpose of this presentation

● This subject concerns everybody
● This is a key point in developing a product
● Not much information about it
● Sometimes postponed until last minute...

11Tristan Lelong - ELC 2013

About this presentation

● Focus on stock systems
● Use of existing components
● Adding new components

12Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● Linux kernel offers a coredump feature
● What is a coredump
● How are they generated
● What is the typical usage
● How are coredumps designed
● Why coredumps may not be suitable

13Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● What is a coredump
● Process has a virtual memory space
● Memory is divided in segment

– Code: software / libraries
– Stack
– Heap

● Segments are mapped in the process virtual
address space

14Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● What is a coredump
● Software runs in userspace

– Linux kernel enforces permissions
● When an error condition is detected, the kernel

notify the software using unix signals.
– SIGSEGV
– SIGBUS
– SIGABRT
– SIGFPE

– SIGTRAP
– SIGILL
– SIGBUS
– SIGQUIT

– SIGXCPU
– SIGSYS
– SIGXFSZ

15Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● Man 7 signal
● All signals
● Signum
● Short description
● Default actions
● Much more...

16Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● How are they generated: user side
● Need to activate the ELF_CORE option in kernel
● Need to set the core_pattern

– $> echo “core” > /proc/sys/kernel/core_pattern
● Need to set ulimit

– $> ulimit -c unlimited
● Special care for busybox systems

– Activate: FEATURE_INIT_COREDUMPS
– A special file .init_enable_core must be present in /

17Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● How are they generated: kernel side
● When delivering a signal: get_signal_to_deliver()
● If signal matches the mask: SIG_KERNEL_COREDUMP_MASK
● Kernel calls do_coredump() from the filesystem subsytem

– Various checks (recursive crash, command format, ...)
– Open the output descriptor (file or pipe)

● Then calls core_dump() for the current binary format

– elf_core_dump() is called for ELF
– Collect all data and dump segments to the output descriptor

(file or pipe)

18Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● What is the typical usage
● Debugging with GDB
● Using the symbols from debug binaries
● Full access to backtrace, variables

19Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

DEMO
GDB + coredump for post-mortem analysis

20Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● How are coredumps designed:
● Coredumps are ELF files
● The ELF e_type is ET_CORE (4)

21Tristan Lelong - ELC 2013

ELF file format

● Executable and Linkable Format
● Reference in UNIX systems since 1999
● Standardized structure:

● Headers
● Segments (physical view)
● Sections (linker view)

22Tristan Lelong - ELC 2013

ELF file format

● On GNU/Linux memory map are reachable:
● /proc/<pid>/maps

23Tristan Lelong - ELC 2013

ELF file format

● Man elf
● Headers description
● Segments and sections format
● Description of all structures members
● Listing / description of standard sections

24Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● How are coredumps designed
● Generic ELF header
● Description of all segments
● No section / No symbol
● One specific segment: PT_NOTE
● Text segment
● Stack segment (end of memory space)

25Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● Why coredumps may not be suitable
● Coredumps are binaries: need tools to interpret
● Coredumps are large

– All segment dumped: main app + libraries
– Multithread increases the overall size (8MB / thread)

● Coredump does not contain debug symbols

26Tristan Lelong - ELC 2013

Tools: binutils / objdump

● Specific to the architecture
● Part of the toolchain
● Contains useful tool for debugging

● objdump

27Tristan Lelong - ELC 2013

Tools: binutils / objdump

● Objdump parses an ELF file
● Reads headers
● Reads segments / sections tables
● Dumps segments / sections
● Disassembles code
● Resolves symbols and debugging information

28Tristan Lelong - ELC 2013

Tools: binutils / objdump

DEMO
structure of a coredump using objdump

29Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● The PT_NOTE segment is not a memory dump
● It is generated by Linux kernel function fill_note_info()
● It is then dumped as the first segment of coredump
● It contains generic process info

30Tristan Lelong - ELC 2013

Tools: Linux kernel coredumps

● PT_NOTE segment:
● prstatus: NT_PRSTATUS (for each thread)

– Signals / pids / time / registers
● psinfo: NT_PRPSINFO

– Process state / UID / GID / name / args
● auxv: NT_AUXV
● fpu: NT_PRFPREG
● xfpu: ELF_CORE_XFPREG_TYPE

31Tristan Lelong - ELC 2013

Tools: libc

● Libc offers an unwinding function:
● backtrace()

● It can even resolve addresses to symbols
● backtrace_symbols(), backtrace_symbols_fd()

● Work only inside the current process
● Useful for error logs in your software

32Tristan Lelong - ELC 2013

Tools: ptrace

● ptrace is a system call in unix systems
● IRIX, AIX, NetBSD, FreeBSD, OpenBSD, Linux...

● Access to another process memory space
● Registers, data, code

● Very powerful
● For debugging
● For profiling
● For on the fly patching

33Tristan Lelong - ELC 2013

Tools: libunwind

● Libunwind project
● Aims at providing a common API to determine the call

chain of a program.
● Works locally and remotely (need to use accessors).
● Works with several architectures:

– x86, x86_64, ppc (32/64), mips, ia64, hppa, arm, superH

● Since release 1.1 (oct 2012): can unwind coredumps
● Still need the full coredump file

34Tristan Lelong - ELC 2013

Tools: gdb

● GNU debugger
● Really powerful

● Remote debugging
● Scripting for auto debugging

35Tristan Lelong - ELC 2013

Tools: debuggerd

● Android debugging service
● Debuggerd is running in background
● Uses a custom libc: android bionic to hook signal

reception
● Uses ptrace to access process information
● Good unwinding but working only for ARM

36Tristan Lelong - ELC 2013

Tools: crash_handler

● Tim Bird crash handler
● Works for ARM architecture
● Hooks on core generation: core_pattern
● Uses ptrace and /proc for information extraction
● Unwinding:

● Best guess
● Based on unwinding tables
● McTernan: modeling an ARM processor

37Tristan Lelong - ELC 2013

Tools: cortex

● Author: Tristan Lelong
● Started in 2011
● Objective was to have a userland equivalent to

kernel oopses
● Generate crash report with relevant informations in

a simple and human (developer) readable format.

38Tristan Lelong - ELC 2013

Tools: cortex

● The name come from the contraction of
coredump and textreport: COReTEXt

● Cortex aims at converting binary cores to text
reports.

39Tristan Lelong - ELC 2013

Tools: cortex

● Dependency on binutils for code disassembly
● No dependency on libelf

● Use only standard elf.h header libc
● Easy raw access to the segments
● Parsing of core is done on-the-fly to comply with the

core_pattern streaming feature: not seekable
stream.

40Tristan Lelong - ELC 2013

Tools: cortex

● Easily integrated in the target system
● Installed as a core handler in core_pattern proc file
● Can be integrated in a core handling chain
● No system source code modification required

41Tristan Lelong - ELC 2013

Tools: cortex

● Architectures are handled in separate modules
● Makefile selects the architecture to include

depending on configure variables
● New architectures can be added by following a

standardized API
● declared in arch/cortex_arch.h
● 7 functions exported in struct cortex_arch_ops

42Tristan Lelong - ELC 2013

Tools: cortex

DEMO
cortex text report generation

43Tristan Lelong - ELC 2013

Tools: cortex

● Constraints when using cortex
● The unwinding is relying on frame pointers (option

-fno-omit-framepointer required for accurate results)
● Equivalent production binaries with symbols must

be generated and kept.

44Tristan Lelong - ELC 2013

Tools: cortex

● Another feature recently added is the coredump
stripping:
● Remove all text sections except the current one
● Keep only the top part of the stack segment

● Stripped coredumps are compatible with gdb
even though less information is available

45Tristan Lelong - ELC 2013

Tools: cortex

DEMO
cortex stripped coredump

46Tristan Lelong - ELC 2013

Tools: cortex

● Google project already online
● http://cortex-tool.googlecode.com
● Sources on git
● GPLv2 licensed

● First release: cortex-0.1 is available
● Handle ARM, x86 architectures
● Basic unwinding based on frame pointers

http://cortex-tool.googlecode.com/

47Tristan Lelong - ELC 2013

Tools: cortex

● Next steps:
● Improve unwinding
● Add new architectures
● Include it in build systems

48Tristan Lelong - ELC 2013

Debugging for production systems

Thank you for your attention

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

