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Who am I?

● Software engineer at Adeneo Embedded 
(Bellevue, WA)
● Systems:

– GNU/Linux
– Android

● Main activities:
– BSP adaptation
– Driver development
– System integration
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Production systems constraints

● Production systems have limited resources
● Production systems are secured
● Production systems are not connected
● Production systems are not accessible
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Production systems constraints

● Production systems have limited resources
● Limited CPU

– Cannot do some heavy processing
● Limited RAM

– Cannot process huge files
● Limited ROM

– Cannot store all symbols, debug tools
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Production systems constraints

● Production systems are secured
● No external access to the filesystem
● No automatic information reporting
● No tools to perform in-depth analysis 
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Production systems constraints

● Production systems are not connected
● No internet connection to send reports
● No link to do remote debugging
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Production systems constraints

● Production systems are not accessible
● No UI for end users
● Not in the developers' hands
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Production systems constraints

● Some more constraints
● A production system is not only “your software”

– No full knowledge of all components
– No control on other components
– Build systems tend to give more control

● ...



 

9Tristan Lelong - ELC 2013

Purpose of this presentation

● Tim Bird did a very good presentation about 
debugging in production systems during ELC 
2012 (Appropriate Crash Handling in Linux)

● This presentation focuses on
● The same subject
● Other key points
● Further information
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Purpose of this presentation

● This subject concerns everybody
● This is a key point in developing a product
● Not much information about it
● Sometimes postponed until last minute...
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About this presentation

● Focus on stock systems
● Use of existing components
● Adding new components
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Tools: Linux kernel coredumps

● Linux kernel offers a coredump feature
● What is a coredump
● How are they generated
● What is the typical usage
● How are coredumps designed
● Why coredumps may not be suitable
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Tools: Linux kernel coredumps

● What is a coredump
● Process has a virtual memory space
● Memory is divided in segment

– Code: software / libraries
– Stack
– Heap

● Segments are mapped in the process virtual 
address space
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Tools: Linux kernel coredumps

● What is a coredump
● Software runs in userspace

– Linux kernel enforces permissions
● When an error condition is detected, the kernel 

notify the software using unix signals.
– SIGSEGV
– SIGBUS
– SIGABRT
– SIGFPE

– SIGTRAP
– SIGILL
– SIGBUS
– SIGQUIT

– SIGXCPU
– SIGSYS
– SIGXFSZ
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Tools: Linux kernel coredumps

● Man 7 signal
● All signals 
● Signum
● Short description
● Default actions
● Much more...
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Tools: Linux kernel coredumps

● How are they generated: user side
● Need to activate the ELF_CORE option in kernel
● Need to set the core_pattern

– $> echo “core” > /proc/sys/kernel/core_pattern 
● Need to set ulimit 

– $> ulimit -c unlimited
● Special care for busybox systems

– Activate: FEATURE_INIT_COREDUMPS
– A special file .init_enable_core must be present in /
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Tools: Linux kernel coredumps

● How are they generated: kernel side
● When delivering a signal: get_signal_to_deliver()
● If signal matches the mask: SIG_KERNEL_COREDUMP_MASK
● Kernel calls do_coredump() from the filesystem subsytem

– Various checks (recursive crash, command format, ...)
– Open the output descriptor (file or pipe)

● Then calls core_dump() for the current binary format

– elf_core_dump() is called for ELF
– Collect all data and dump segments to the output descriptor 

(file or pipe)
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Tools: Linux kernel coredumps

● What is the typical usage
● Debugging with GDB
● Using the symbols from debug binaries
● Full access to backtrace, variables
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Tools: Linux kernel coredumps

DEMO
GDB + coredump for post-mortem analysis
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Tools: Linux kernel coredumps

● How are coredumps designed:
● Coredumps are ELF files
● The ELF e_type is ET_CORE (4) 
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ELF file format

● Executable and Linkable Format
● Reference in UNIX systems since 1999
● Standardized structure:

● Headers
● Segments (physical view)
● Sections (linker view)
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ELF file format

● On GNU/Linux memory map are reachable:
● /proc/<pid>/maps
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ELF file format

● Man elf
● Headers description
● Segments and sections format
● Description of all structures members
● Listing / description of standard sections 
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Tools: Linux kernel coredumps

● How are coredumps designed
● Generic ELF header 
● Description of all segments
● No section / No symbol
● One specific segment: PT_NOTE
● Text segment
● Stack segment (end of memory space)
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Tools: Linux kernel coredumps

● Why coredumps may not be suitable
● Coredumps are binaries: need tools to interpret
● Coredumps are large

– All segment dumped: main app + libraries
– Multithread increases the overall size (8MB / thread)

● Coredump does not contain debug symbols
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Tools: binutils / objdump

● Specific to the architecture
● Part of the toolchain
● Contains useful tool for debugging

● objdump
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Tools: binutils / objdump

● Objdump parses an ELF file
● Reads headers
● Reads segments / sections tables
● Dumps segments / sections 
● Disassembles code
● Resolves symbols and debugging information
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Tools: binutils / objdump

DEMO
structure of a coredump using objdump
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Tools: Linux kernel coredumps

● The PT_NOTE segment is not a memory dump
● It is generated by Linux kernel function fill_note_info()
● It is then dumped as the first segment of coredump
● It contains generic process info
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Tools: Linux kernel coredumps

● PT_NOTE segment:
● prstatus: NT_PRSTATUS (for each thread)

– Signals / pids / time / registers
● psinfo: NT_PRPSINFO

– Process state / UID / GID / name / args
● auxv: NT_AUXV
● fpu: NT_PRFPREG
● xfpu: ELF_CORE_XFPREG_TYPE
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Tools: libc

● Libc offers an unwinding function:
● backtrace()

● It can even resolve addresses to symbols
● backtrace_symbols(), backtrace_symbols_fd()

● Work only inside the current process
● Useful for error logs in your software
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Tools: ptrace

● ptrace is a system call in unix systems
● IRIX, AIX, NetBSD, FreeBSD, OpenBSD, Linux...

● Access to another process memory space
● Registers, data, code

● Very powerful
● For debugging
● For profiling
● For on the fly patching
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Tools: libunwind

● Libunwind project
● Aims at providing a common API to determine the call 

chain of a program.
● Works locally and remotely (need to use accessors).
● Works with several architectures:

– x86, x86_64, ppc (32/64), mips, ia64, hppa, arm, superH

● Since release 1.1 (oct 2012): can unwind coredumps
● Still need the full coredump file
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Tools: gdb

● GNU debugger
● Really powerful

● Remote debugging
● Scripting for auto debugging
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Tools: debuggerd

● Android debugging service
● Debuggerd is running in background
● Uses a custom libc: android bionic to hook signal 

reception
● Uses ptrace to access process information
● Good unwinding but working only for ARM



 

36Tristan Lelong - ELC 2013

Tools: crash_handler

● Tim Bird crash handler
● Works for ARM architecture
● Hooks on core generation: core_pattern
● Uses ptrace and /proc for information extraction
● Unwinding:

● Best guess
● Based on unwinding tables
● McTernan: modeling an ARM processor
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Tools: cortex

● Author: Tristan Lelong
● Started in 2011
● Objective was to have a userland equivalent to 

kernel oopses
● Generate crash report with relevant informations in 

a simple and human (developer) readable format.
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Tools: cortex

● The name come from the contraction of 
coredump and textreport: COReTEXt

● Cortex aims at converting binary cores to text 
reports.
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Tools: cortex

● Dependency on binutils for code disassembly
● No dependency on libelf

● Use only standard elf.h header libc
● Easy raw access to the segments
● Parsing of core is done on-the-fly to comply with the 

core_pattern streaming feature: not seekable 
stream.
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Tools: cortex

● Easily integrated in the target system
● Installed as a core handler in core_pattern proc file
● Can be integrated in a core handling chain
● No system source code modification required
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Tools: cortex

● Architectures are handled in separate modules
● Makefile selects the architecture to include 

depending on configure variables
● New architectures can be added by following a 

standardized API 
● declared in arch/cortex_arch.h
● 7 functions exported in struct cortex_arch_ops
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Tools: cortex

DEMO
cortex text report generation
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Tools: cortex

● Constraints when using cortex
● The unwinding is relying on frame pointers (option 

-fno-omit-framepointer required for accurate results)
● Equivalent production binaries with symbols must 

be generated and kept.
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Tools: cortex

● Another feature recently added is the coredump 
stripping:
● Remove all text sections except the current one
● Keep only the top part of the stack segment

● Stripped coredumps are compatible with gdb 
even though less information is available
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Tools: cortex

DEMO
cortex stripped coredump
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Tools: cortex

● Google project already online
● http://cortex-tool.googlecode.com
● Sources on git
● GPLv2 licensed

● First release: cortex-0.1 is available
● Handle ARM, x86 architectures
● Basic unwinding based on frame pointers

http://cortex-tool.googlecode.com/
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Tools: cortex

● Next steps:
● Improve unwinding
● Add new architectures
● Include it in build systems
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Debugging for production systems

Thank you for your attention

Questions?
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