
1

The challenge for this presentation

1. Building an embedded Linux distribution from source is a complex task

2. The Yocto Project is a collection of powerful tools with lots of complexity of their own

A word of thanks

This presentation is built on the work of several others including: Chris Hallinan, Chris

Larson, Robert P.J. Day, Khem Raj and everyone that’s contributed to the documents in OE

and YP.

Setting expectations

There is too much material to cover in a 50 minute presentation. So, in this presentation, I

am going to make a quick survey of the basics and highlight the “big pieces”. Next, I will

highlight some useful tools and lastly, I will provide a set of quick “how to” steps for some

common tasks.

Important to highlight the excellent documentation that can be found on the project site:

https://www.yoctoproject.org/documentation/current

2

It's not an embedded Linux distribution – it creates a custom one for you

The Yocto Project is an open source collaboration project that provides templates,

tools and methods to help you create custom Linux-based systems for embedded

products regardless of the hardware architecture.

Put another way:

The Yocto Project tries to provide the basic pieces for building an embedded Linux

distribution. These pieces add little value for companies, but are necessary to build an end

product. In short, the project should allow developers to focus on the features that matter

to *their* customers.

Other points to make:

Customers can be internal and external.

3

Using an existing distro, e.g. Debian or Fedora is certainly a valid choice, but limits flexibility

There are reference distributions, e.g. Angstrom & Poky, however, Angstrom provides a
binary feed and is primarily geared at enabling hobbyist boards.

Poky is mainly geared towards testing the YP build system and is therefore not as stable.

<Plug for Mentor Embedded Linux>

Regardless of the choice, building a distro from source enhances:

Security

– Since source code is visible, can tell what code is doing and prevent malicious code

– Also enables ability to patch source quickly when exploits are discovered (see timeliness)

Licensing

– Provides discreet control over the source going into the image, so licensing can be
known/controlled

Tweaking/Image size

– Provides complete control over the image and therefore allows for optimizations and
tweaking that may not otherwise be possible

4

Timeliness

– Reduced dependency on outside packagers, e.g. Ubuntu, to fix a problem. Instead, can
incorporate new features and fixes on personal schedule

4

http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html

Following the recipe of the quick start is a fun way to get started and will give us a good

initial tree to break down further.

5

Highlight each of the directories and what they do.

Bitbake – is the build engine

Documentation – duh!

Meta-* - metadata – the meat! - critical information that drives the whole process

Scripts – “glue” pieces that makes things work, including wrappers, e.g. runqemu

Point out the layers, but save a deeper discussion for later.

Point out the script and explain what it does, leading to the next slide.

6

Initial script run:

Point out the bitbake targets, briefly describing each and point out the runqemu command

7

Created the initial build tree and seeded it with a starting local.conf

Show the initial build tree, including the local.conf.

Highlight the bblayers.conf and defer it again.

Pretty boring, as yet.

8

Sets the path and a few ENV variables.

Non-destructive to re-run, in fact, needed to set up the environment.

Observe that the last bit is the same and explain the env variables quickly, e.g.

BB_EXTRA_WHITE

9

Show the initial build tree, including the local.conf.

Highlight the bblayers.conf and defer it again.

Pretty boring, as yet.

10

11

Seriously, this may take a while depending on your machine and network speed. Typical

times is 1-2 hours and don’t forget to have enough disk space!

12

So, what the heck is all this stuff?

1. downloads – source downloads (mention sharing the cache)

2. sstate-cache – package caching

3. tmp – the build output

13

So, what the heck is all this stuff?

Important bits

1. Buildstats – useful build information

2. deploy – this is where final images go

3. pkgdata – information used to describe the packages

4. work – this is where the “action” is. Source archive, logs, and scripts for each build go

here

14

15

16

Note: bitbake –g also provides useful information by dumping the dependency graphs. Be

careful, lots of information in this.

17

Bitbake layers provide a way to collect related recipes together. This modularity, when

used correctly, enables better reuse and easier maintenance.

Points to make:

1. Types of layers vary, call out bsp layers (refer to docs)

2. Other examples, networking, ivi, gui, etc

18

$ bitbake-layers

usage: bitbake-layers <command> [arguments]

Available commands:

flatten

flattens layer configuration into a separate output directory.

help

display general help or help on a specified command

show-appends

list bbappend files and recipe files they apply to

show-cross-depends

figure out the dependency between recipes that crosses a layer boundary.

show-layers

show current configured layers

show-overlayed

list overlayed recipes (where the same recipe exists in another layer)

show-recipes

list available recipes, showing the layer they are provided by

help

display general help or help on a specified command

19

Analyze an example recipe.

Recipes contain the instructions on how to take a set of source files and generate one or

more output packages.

Name of the recipe is automatically inherited by many variable in total, or in part.

NOTE: Name-spacing is used a lot to separate items

Important pieces include:

SRC_URI

License fields

Checksum fields

…

20

Refer to Chris Hallinan’s blog post:

http://blogs.mentor.com/chrishallinan/blog/2012/04/27/more-on-yocto-terminology-

recipes-and-packages/

Default four packages, basic binary, -dev, -dbg, & -doc. Determined by the FILES_*

variables

Example of multiple packages for a single recipe from Chris’ post:

$ bitbake -e python | grep ^PACKAGES=

PACKAGES="libpython2 python-dbg python-2to3 python-audio python-bsddb

python-codecs python-compile python-compiler python-compression python-

core python-crypt python-ctypes python-curses python-datetime python-db

python-debugger python-dev python-difflib python-distutils-staticdev python-

distutils python-doctest python-elementtree python-email python-fcntl

python-gdbm python-hotshot python-html python-idle python-image python-

io python-json python-lang python-logging python-mailbox python-math

python-mime python-mmap python-multiprocessing python-netclient python-

netserver python-numbers python-pickle python-pkgutil python-pprint

python-profile python-pydoc python-re python-readline python-resource

python-robotparser python-shell python-smtpd python-sqlite3 python-sqlite3-

21

tests python-stringold python-subprocess python-syslog python-terminal

python-tests python-textutils python-threading python-tkinter python-unittest

python-unixadmin python-xml python-xmlrpc python-zlib python-modules

python-misc python-man"

When BitBake completes “baking” the python recipe, a package is created for

each of the named elements show above in the ‘PACKAGES=’ listing.

21

22

Chris Larson recently created a new tool, called ‘bb’.

Very useful for inspection of dependencies

$ bb

usage: bb [-h]

{whatdepends,help,showdepends,dependinfo,show,whatprovides,whatrprovides,showprov

ides}

...

Prototype subcommand-based bitbake UI

positional arguments:

{whatdepends,help,showdepends,dependinfo,show,whatprovides,whatrprovides,showprov

ides}

dependinfo

help Show overall help, or help for a specific subcommand

show Show bitbake metadata (global or recipe)

showdepends Show what the specified target depends upon

showprovides Show what the specified target provides

23

whatdepends Show what depends on the specified target

whatprovides Show what recipes provide the specified target

whatrprovides Show what recipes provide the specified target

optional arguments:

-h, --help show this help message and exit

23

24

25

In almost all case, there are multiple ways to do things. Check out the docs for more

alternatives.

26

27

My final thoughts are mostly common sense.

1. Building a distibution from scratch is a daunting task, the YP gives you a great running

start

2. Use an existing BSP as your starting point

3. Get comfortable with the process and understand the different roles/workflows that

your organization will need to support

4. Play around with it and explore

5. The tools aren’t perfect and there are significant gaps, but that’s where we can use

help!

28

29

