embedded

Building a Custom
Embedded Linux
Distribution with

the Yocto Project

Sean Hudson

Embedded Linux Architect
Embedded Software Division
Mentor Graphics, Inc

mentor.com/embedded

Agenda

- A quick overview

- A Yocto Project

- The build tree

- Layers, Recipes, .bbappends, & packages
- Some useful tools

- Howdo I?

- Q&A

ELC - Feb 2013 2 embedded

The challenge for this presentation
1. Building an embedded Linux distribution from source is a complex task
2. The Yocto Project is a collection of powerful tools with lots of complexity of their own

A word of thanks

This presentation is built on the work of several others including: Chris Hallinan, Chris
Larson, Robert P.J. Day, Khem Raj and everyone that’s contributed to the documents in OE
and YP.

Setting expectations

There is too much material to cover in a 50 minute presentation. So, in this presentation, |
am going to make a quick survey of the basics and highlight the “big pieces”. Next, | will
highlight some useful tools and lastly, | will provide a set of quick “how to” steps for some
common tasks.

Important to highlight the excellent documentation that can be found on the project site:
https://www.yoctoproject.org/documentation/current

What is the Yocto Project?

Yocto Project | Open Source embedded Linux build system, package metadata and SDK generator - Google Chrome

Yocto Project | Open Sour x

& @ & | 8 https://www.yoctoproject.org g Ei # @ =
i Jeanine [Sean i Shared il Other Bookmarks

SEARCH

ABOUT

ECOSYSTEM

DOWNLOADS

TOOLS + RESOURCES

DOCUMENTATION

It's not an embedded Linux distribution
- it creates a custom one for you

The Yocto Project is an open source collaboration project that provides templates, tools and methods to he\p you
START HERE TO LEARN MORE v create custom Linux-based systems for embedded products regardless of the hardware architecture. R

ELC - Feb 2013 3 embedded

It's not an embedded Linux distribution — it creates a custom one for you

The Yocto Project is an open source collaboration project that provides templates,
tools and methods to help you create custom Linux-based systems for embedded
products regardless of the hardware architecture.

Put another way:

The Yocto Project tries to provide the basic pieces for building an embedded Linux
distribution. These pieces add little value for companies, but are necessary to build an end
product. In short, the project should allow developers to focus on the features that matter
to *their* customers.

Other points to make:
Customers can be internal and external.

Why not use an existing distro?

- Building your own distro from source provides better
flexibility and control of your embedded image.

- This enhances
— Security
—Timeliness
—Image size
— Licensing

ELC - Feb 2013 4 menior

Using an existing distro, e.g. Debian or Fedora is certainly a valid choice, but limits flexibility

There are reference distributions, e.g. Angstrom & Poky, however, Angstrom provides a
binary feed and is primarily geared at enabling hobbyist boards.

Poky is mainly geared towards testing the YP build system and is therefore not as stable.

<Plug for Mentor Embedded Linux>

Regardless of the choice, building a distro from source enhances:

Security

— Since source code is visible, can tell what code is doing and prevent malicious code

— Also enables ability to patch source quickly when exploits are discovered (see timeliness)
Licensing

— Provides discreet control over the source going into the image, so licensing can be
known/controlled

Tweaking/Image size

— Provides complete control over the image and therefore allows for optimizations and
tweaking that may not otherwise be possible

Timeliness

— Reduced dependency on outside packagers, e.g. Ubuntu, to fix a problem. Instead, can
incorporate new features and fixes on personal schedule

Let’s get a (quick!) start

- The Yocto Project has some great documentation
available on the project website

- In particular, the quickstart gives us a great way to
take a look at an example build structure

] meniror
ELC - Feb 2013 5 embedded

http://www.yoctoproject.org/docs/current/yocto-project-gs/yocto-project-gs.html

Following the recipe of the quick start is a fun way to get started and will give us a good
initial tree to break down further.

M ™ ® shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.0% 11

-X 10 shudson shudson 4.0K Feb 19 13: -/
-X 22 shudson shudson 4,0K Feb 19 13: i
-x 6 shudson shudson 4&0K Oct 22 16: bitbake/
-X 11 shudson shudson 4.0K Oct 16: documentation/
1 shudson shudson 545 Oct 16:03 LI
21 shudson shudson 4.0K Oct 16: me
4 shudson shudson 4.0K Oct
shudson shudson 4.6K Oct
shudson shudson 4.0K Oct 5 0
shudson shudson 4.0K Oct : E to-bsp/

shudson shudson 2.0K Oct :03 README
shudson shudson 17K Oct . README . hardware

W=TW=-F=-

shudson shudson 4.0K Oct 3 scripts/
~/projects/poky-danny-8.0% l

5
6
9 t
-rwxrwxr-x 1 shudson shudson 1.5K Oct :03 oe-init-build-env*
1
1
8
n:

shudson@roni

ELC - Feb 2013 6

Anatomy of a Yocto Project download

embedded

Highlight each of the directories and what they do.
Bitbake —is the build engine
Documentation — duh!

Meta-* - metadata — the meat! - critical information that drives the whole process
Scripts — “glue” pieces that makes things work, including wrappers, e.g. rungemu

Point out the layers, but save a deeper discussion for later.
Point out the script and explain what it does, leading to the next slide.

So, let’s run the script

£ 2 & shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.0% . ./oe-init-build-env
You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to use a
different MACHINE (target hardware) or enable parallel build options to take
advantage of multiple cores for example. See the file for more information as
common configuration options are commented.

The Yocto Project has extensive documentation about OE including a reference manual
jwhich can be found at:
http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website
http://www.openembedded.org/

You had no conf/bblayers.conf file. The configuration file has been created for
you with some default values. To add additional metadata layers into your
configuration please add entries to this file

The Yocto Project has extensive documentation about OF including a reference manual
which can be found a
http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website
http://www.openembedded.org/

Shell environment set up for builds.
You can now run 'bitbake <target>

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-toolchain-sdk
adt-installer
meta-ide-support

You can also run generated qemu images with a command like 'rungemu gemux

ELC - Feb 2013 T embedded

Initial script run:
Point out the bitbake targets, briefly describing each and point out the rungemu command

What did the script do?

O™ shudson@ronin: ~

shudson@ronin:~/projects/poky-danny-8.0% tree build
build
L— conf

bblayers.conf

local.conf

1 directory, 2 files
shudson@ronin:~/projects/poky-danny-8.0% l

ELC - Feb 2013 8

embedded

Created the initial build tree and seeded it with a starting local.conf
Show the initial build tree, including the local.conf.

Highlight the bblayers.conf and defer it again.

Pretty boring, as yet.

What if we run it again?

O™ & shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.0$. ./oe-init-build-env

Shell environment set up for builds.
You can now run 'bitbake <target>'

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-toolchain-sdk
adt-installer
meta-ide-support

You can also run generated gemu images with a command like 'rungemu gemux86’

shudson@ronin: /data/projects/poky-danny-8.06/builds [

ELC - Feb 2013 9

embedded

Sets the path and a few ENV variables.
Non-destructive to re-run, in fact, needed to set up the environment.

Observe that the last bit is the same and explain the env variables quickly, e.g.

BB_EXTRA_WHITE

No change

O™ shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.0% tree build
build
L— conf

bblayers.conf
local.conf

1 directory, 2 files
shudson@ronin:~/projects/poky-danny-8.0% l

ELC - Feb 2013

embedded

Show the initial build tree, including the local.conf.

Highlight the bblayers.conf and defer it again.

Pretty boring, as yet.

10

Let’s run a build

@@ @ shudson@ronin: ~

shudson@ronin: /data/projects/poky-danny-8.6/build$ time bitbake -k core-image-sato

WARNING: Host distribution "Ubuntu 12.04.2 LTS" has not been validated with this version of the build system; you may possibly exper
ience unexpected failures. It is recommended that you use a tested distribution.

Loading cache: 100% |####sssssasssitattatiat ittt ittt R R R R AR R R R AR AR | ETA: 00:00:00
Loaded 1132 entries from dependency cache.

Build Configuration

meta-yocto-bsp = "<unknown>:<unknown>"

NOTE: Resolving any missing task gueue dependencies

NOTE: Preparing rungueue

NOTE: Executing SetScene Tasks

Currently 4 running tasks (1488 of 1785):

8: ncurses-5.9-r11.1 do_package write rpm_setscene (pid 4525)

1: zypper-1.5.3-git1+2c5bb6ceb99ecd950ef993e43d77bf0569€a0582-r3 do package write rpm setscene (pid 4546)
2: bash-4.2-r5 do package write rpm setscene (pid 4552)

i: rpm-5.4.9-r52 do_package write rpm setscene (pid 4545)

ELC - Feb 2013 11
€ embedded

11

Then....

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GET BACK
TO WORK!

ELC - Feb 2013 12 ma_ﬂﬁi‘C‘Jr

Seriously, this may take a while depending on your machine and network speed. Typical
times is 1-2 hours and don’t forget to have enough disk space!

12

shudson@ronin:

=X 12
shudson@ronin:

@ ® @ shudson@ronin: ~

~/projects/poky-danny-8.0% 11 build

4 shudson shudson 4.6K Feb 11 17:43 ./

shudson shudson 4.6K Feb 2@ 10:58 ../

shudson shudson © Feb 11 17:37 bitbake.lock
shudson shudson 4.0K Feb 11 18:21 conf/

shudson shudson 26 Feb 11 17:35 downloads -> /da
shudson shudson 70 Feb 11 17:43 pseudodone
shudson shudson 25 Feb 11 17:35 sstate-cache ->
shudson shudson 4.6K Feb 11 18:23 tmp/
~/projects/poky-danny-8.03$ |

ELC - Feb 2013

What’s the tree look like now?

data

embedded

So, what the heck

is all this stuff?

1. downloads — source downloads (mention sharing the cache)

2. sstate-cache —

package caching

3. tmp —the build output

13

What'’s in that tmp dir?

@ shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.8$ tree -L 2 -d build/tmp/

33 directories
shudson@ronin:~/projects/poky-danny-8.6s [|

ELC - Feb 2013 14
€ embedded

So, what the heck is all this stuff?

Important bits

1.

2.
3.
4.

Buildstats — useful build information

deploy — this is where final images go

pkgdata — information used to describe the packages

work —this is where the “action” is. Source archive, logs, and scripts for each build go
here

14

So, what’s in the work dir?

O™ & shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.8$ 11 build/tmp/work

total 52K
6
12
21
284
22
127

shudson
shudson
shudson
shudson
shudson
shudson

shudson 4.0K
shudson 4.6K
shudson 4.6K
shudson 20K
shudson 4.6K
shudson 12K

Feb
Feb
Feb
Feb
Feb
Feb

11
11
11
11
11
11

shudson@ronin:~/projects/poky-danny-8.0% I

18:
18:
18:
18:
18:
18:

ELC - Feb 2013

inux/

embedded

15

How far down do | need to go?!

shudson@ronin: ~

shudson@ronin:~/projects/poky-danny-8.0$ tree -d -L 1 build/tmp/work/i586-poky-linux/busybox-1.20.2-r2/

bui i y-linux 1.2

12 directories
shudson@ronin:~/projects/poky-danny-8.0% ||

ELC - Feb 2013

embedded

16

Dumping a bitbake environment

Dump the environment that bitbake uses for a target
* bitbake —e <target>
Especially useful for finding some things quickly,
e.gd.
Where is the source for a recipe?
$ Bitbake —e <target> | grep "S=
Where is the working directory for a recipe?
$ bitbake —e <target> | grep "WORKDIR=
What image types are being built?
$ bitbake —e <image-target> | grep "lMAGE_FSTYPES=

ELC - Feb 2013 17 m@ﬁfor

Note: bitbake —g also provides useful information by dumping the dependency graphs. Be

careful, lots of information in this.

17

So, what are layers then?

M ®® shudson@ronin: ~
shudson@ronin:~/projects/poky-danny-8.0$ tree -d meta-yocto-bsp/

30 directories
shudson@ronin:~/projects/p

ELC - Feb 2013

embedded

Bitbake layers provide a way to collect related recipes together. This modularity, when

used correctly, enables better reuse and easier maintenance.

Points to make:
1. Types of layers vary, call out bsp layers (refer to docs)
2. Other examples, networking, ivi, gui, etc

18

How to explore layers efficiently

- Luckily, there’'s a tool to help out
- bitbake-layers

flatten

help

show-appends
show-cross-depends
show-layers
show-overlayed
show-recipes

ELC - Feb 2013 19

- It quickly becomes non-trivial to look at layers

embedded

S bitbake-layers

usage: bitbake-layers <command> [arguments]

Available commands:

flatten

flattens layer configuration into a separate output directory.

help

display general help or help on a specified command

show-appends

list bbappend files and recipe files they apply to
show-cross-depends
figure out the dependency between recipes that crosses a layer boundary.

show-layers

show current configured layers

show-overlayed
list overlayed recipes (where the same recipe exists in another layer)

show-recipes

list available recipes, showing the layer they are provided by

help

display general help or help on a specified command

19

So, what are recipes?

SUMMARY = "Poky-tiny init*
DESCRIPTION = "Basic init system for poky-tiny*
LICENSE = "MIT*

LIC_FILES_CHKSUM =
"file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

PR ="r1*
RDEPENDS_${PN} = "busybox"

SRC_URI = "file://init \ file://rc.local.sample \ *

do_configure() {: }

do_compile() {: }

do_install() {

install -d ${D}${sysconfdir}

install -m 0755 ${WORKDIR}/init ${D}

install -m 0755 ${WORKDIR}/rc.local.sample ${D}${sysconfdir} }

FILES_${PN} = "/init ${sysconfdir}/rc.local.sample"

ELC - Feb 2013 20 menror
s embedded

Analyze an example recipe.

Recipes contain the instructions on how to take a set of source files and generate one or
more output packages.
Name of the recipe is automatically inherited by many variable in total, or in part.

NOTE: Name-spacing is used a lot to separate items

Important pieces include:
SRC_URI

License fields

Checksum fields

20

Wait, so what are packages then?

- Packages
« Qutput built from the instructions in a recipe

« Names are not (necessarily) the same as the recipe
name, but they are usually related

» Mutliple packages can come from a single recipe

« The specific files included in each package is controlled
by the FILES_* variables

- NOTE: Images include packages, not recipes!

ELC - Feb 2013 21
i embedded

Refer to Chris Hallinan’s blog post:
http://blogs.mentor.com/chrishallinan/blog/2012/04/27 /more-on-yocto-terminology-
recipes-and-packages/

Default four packages, basic binary, -dev, -dbg, & -doc. Determined by the FILES_*
variables

Example of multiple packages for a single recipe from Chris’ post:

S bitbake -e python | grep "PACKAGES=

PACKAGES="libpython2 python-dbg python-2to3 python-audio python-bsddb
python-codecs python-compile python-compiler python-compression python-
core python-crypt python-ctypes python-curses python-datetime python-db
python-debugger python-dev python-difflib python-distutils-staticdev python-
distutils python-doctest python-elementtree python-email python-fcntl
python-gdbm python-hotshot python-html python-idle python-image python-
io python-json python-lang python-logging python-mailbox python-math
python-mime python-mmap python-multiprocessing python-netclient python-
netserver python-numbers python-pickle python-pkgutil python-pprint
python-profile python-pydoc python-re python-readline python-resource
python-robotparser python-shell python-smtpd python-sqlite3 python-sqlite3-

21

tests python-stringold python-subprocess python-syslog python-terminal
python-tests python-textutils python-threading python-tkinter python-unittest
python-unixadmin python-xml python-xmlrpc python-zlib python-modules
python-misc python-man"

When BitBake completes “baking” the python recipe, a package is created for
each of the named elements show above in the ‘PACKAGES=’ listing.

21

So, what are .bbappend files?

Used to add customizations without completely
over-riding a recipe.

- Used with layers, this allows for a customization to
track against an “upstream” recipe without a lot of
overhead.

» At the core of how to use layers well.

» Note: As the name implies, these are generally

additive.
— Subtractive operations are difficult technically, so overriding
the recipe is the best recourse

ELC - Feb 2013 22 menior

22

A brand new tool, bb

- A brand new tool

- Still “alpha”

- Useful nonetheless

- Helps examine dependencies

- Can help answer the common question
« What is bringing xyz into my build?

ELC - Feb 2013 23 -
i embedded

Chris Larson recently created a new tool, called ‘bb’.

Very useful for inspection of dependencies

S bb
usage: bb [-h]

{whatdepends,help,showdepends,dependinfo,show,whatprovides,whatrprovides,showprov
ides}

Prototype subcommand-based bitbake Ul
positional arguments:

{whatdepends,help,showdepends,dependinfo,show,whatprovides,whatrprovides,showprov
ides}

dependinfo

help Show overall help, or help for a specific subcommand

show Show bitbake metadata (global or recipe)

showdepends Show what the specified target depends upon

showprovides Show what the specified target provides

23

whatdepends
whatprovides
whatrprovides

optional arguments:

Show what depends on the specified target
Show what recipes provide the specified target
Show what recipes provide the specified target

-h, --help show this help message and exit

23

Putting it all together

embedded

24

Tracking down busybox

shudson@ronin: ~

shudson@ronin: /data/projects/poky-danny-8.6/build$ bitbake-layers show-recipes busy*
WARNING: Host distribution "Ubuntu 12.04.2 LTS" has not been validated with this version of the build system;
you may possibly experience unexpected failures. It is recommended that you use a tested distribution.
Parsing recipes..done.

Available recipes matching busy*:

1.20.2
shudson@ronin: /data/projects/poky-danny-8.8/build$ bitbake -e busybox|grep ~S=
"/data/projects/poky-danny-8.0/build/tmp/work/i586-poky-1linux/busybox-1.20.2-r2/busybox-1.20.2"

shudson@ronin: /data/projects/poky-danny-8.6/build$ bitbake -e busybox|grep ~WORKDIR=
"/data/projects/poky-danny-8.6/build/tmp/work/1586-poky-linux/busybox-1.20.2-r2"
shudson@ronin:/data/projects/poky-danny-8.8/builds

ELC - Feb 2013 25

embedded

25

How do | add my application to an image?

« First, develop your application
+ Different workflows are possible
» Chicken and egg problem?

- Create arecipe
» Build on examples that are already in the layers
« Ask for help, if you get stuck!
Mailing list or irc are great places for this
* Have alook at the recipe skeleton script

- Add the recipe to a layer
« Add the desired package to the image

* Inherit from a image
+ Add to the IMAGE_INSTALL

ELC - Feb 2013 26 mer—]ror

In almost all case, there are multiple ways to do things. Check out the docs for more
alternatives.

How do | add packages to my recipe?

Assuming you have a working recipe
Add new packages using the PACKAGES variable
+ PACKAGES =+ “foo bar”

Add files to each package
* FILES foo = “${bindir}/foo_files”
+ FILES bar = “${incdir}/bar_files”
- Don’t forget to bump your PR value!

ELC - Feb 2013 27 memror

27

Final thoughts

ELC - Feb 2013 28
i embedded

My final thoughts are mostly common sense.

1. Building a distibution from scratch is a daunting task, the YP gives you a great running
start

2. Use an existing BSP as your starting point

3. Get comfortable with the process and understand the different roles/workflows that
your organization will need to support

4. Play around with it and explore

5. The tools aren’t perfect and there are significant gaps, but that’s where we can use
help!

Q&A

ELC - Feb 2013

29

embedded

29

