
Android-IA 
Scalability 

Features To 
Support A 

Single Build 
Target 

 

Andrew Boie 
Jianxun “Chang” Zhang 

Daniel Leung 
Charlie Johnson 

Matt Gumbel 
Andy Ross 



Agenda 

• 01.org – Who We Are 

• Problem statement 

• Automatic module loading with ueventd 

• Flexible installer 

• Ethernet connectivity 

• Scalable HALs 

• EFI & secure boot 

 

 

 

 

 



Android-IA on 01.org - Who We 
Are 

• https://01.org/android-ia/ 

• Part of the larger 01.org website maintained by Intel 
Open Source Technology Center 

• Independent Android community site dedicated to 
driving Android support and innovation on Intel 
Architecture 

• Binaries and source code available 
– Code for all the topics covered today is/will be available 

online 

• Ultimate objective of most of our IA enabling and 
innovation is upstream inclusion in Android Open 
Source Project (AOSP) 

• Join our mailing list! 

https://01.org/android-ia/
https://01.org/android-ia/
https://01.org/android-ia/
https://01.org/android-ia/


Single Build Target 

Objective 
• Run Android at some baseline level of functionality on multiple devices 

with a single binary installation image 
• Ongoing process – every bit helps even if we can’t do it all 
Advantages 
• Reduce the number of hard-coded parameters in the Android board 

configuration files 
• Support many off-the-shelf devices, including ones we don’t know 

about 
• Reduce bring-up time on new platforms 
• Target a class of devices instead of a specific device 
• Lowers expertise required to bring up Android on a system 
Scalability May Not Be For Everyone 
• A single image may make it more difficult to optimize for a specific 

device without breaking something else 
• Requires testing on all devices with any change 

– As opposed to just the specific device being targeted 



Three Classes of Parameters 

• Build-time configuration 
– Much of Android config is currently done here 
– Image is highly tuned to specific destination hardware 

• Install-time configuration 
– Decisions made when software is installed 
– Permanent 

• Stored outside scope of software updates 
• Immutable 
• /factory/factory.prop 

– Scope limited to properties that are not auto-detectable or runtime immutable 
• Camera physical orientation 
• Graphics driver 
• LCD density (EDID-based config in future) 
• Disk partition layout 

– For auto-detectable properties 
• Run detection logic in the installer 
• Otherwise just interactively query the user 

• Runtime configuration 
– Automatically detected or runtime mutable parameters 
– Manual selection, i.e. Settings app 
– Android PackageManager imposes some constraints on what is mutable 



Automatic Kernel Module Loading 

• Modprobe-like library functions 
– insmod_by_dep() and rmmod_by_dep() added to libcutils 
– Traverse modules.dep dependency hierarchy to insert all needed dependencies 
– System-wide and local blacklists can be used to skip loading particular modules 
– rmmod_by_dep() won’t remove a dependency if used by something else 
– Uses modules.alias to map uevent modalias to the module name 

• Enhance ueventd 
– Many uevents may come in before /system is mounted, queue them 
– Deferred processing until /system is available 

• Checks every time there is an ‘add’ event 

• Additional init.rc commands 
– coldboot – trigger ueventd deferred module loading by triggering ‘add’ events in 

sysfs 
– probemod – improved ‘insmod’; inserts required dependencies 

• /sbin/modprobe 
– Drivers in kernel can request modules by launching a program 
– Default to /sbin/modprobe; thin wrapper around insmod_by_dep() 
– Not actually kernel.org GPL Modprobe 



Automatic Module Loading (cont.) 

• Loading appropriate WiFi Drivers 
• Audio codecs 
• USB peripherals 
• Camera Hardware, uvcvideo 
• Not everything can be auto-inserted yet 

– Currently building-in USB Ethernet and USB Serial drivers for 
alternate ramdisk targets 

• No /system available in Recovery Console 

– Sensor Hub drivers currently don’t probe available hardware 
– Modules that require parameters must be inserted via init.rc 

• No modules.conf (yet) 

• You need security too 
– MODSIGN in Linux 3.7 – more on this later 

• Plan is to upstream to AOSP soon 
• https://01.org/android-ia/blogs/jzhang80/2012/increasing-

android-device-scalability-automatic-kernel-module-loading 
 

https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading
https://01.org/android-ia/blogs/jzhang80/2012/increasing-android-device-scalability-automatic-kernel-module-loading


Flexible Disk Installer “Iago” 

• Not really applicable to handset/low-end tablet 
products 

• Replaces old bootable/diskinstaller 
– Buggy, not flexible, MBR with GRUB only 

• Use-cases 
– Install on Android on commodity hardware 

• Including devices not previously known 
• Intended for devices that boot from removable media 

– Dual/Multi boot with other Oses 
– Three boot modes 

• Automatic installer 
– Uses predefined configuration 

• Interactive installer 
– Installation questions to customize to user’s needs 

• Live Android session directly from the USB stick 



Flexible Disk Installer “Iago” 

• Design goals: 

– Lightweight integration into Android tree 

• Pulls in parted, ntfs-3g, efibootmgr 

• Parted eventually going away in favor of custom GPT 
library 

– Support for platform-specific plug-ins similar to 
Recovery/OTA system 

– Interactive disk partitioning 

– Dual/Multi Boot support 

– GPT/UEFI support (Legacy BIOS/MBR support dropped) 

 



Flexible Disk Installer “Iago” 

• Query user for configuration parameters 
– Install-time configuration parameters established here 

– Auto-detectable but immutable props have detection 
logic run in installer environment 

– Selections written to /factory/factory.prop, never 
touched by OTA or Factory Data Reset 

• Eventual support for Multi-Boot 
– Currently support dual boot with Windows 8 

– Ubuntu, Fedora, Tizen, multiple Android installs 

• Eventual support for a GUI 
– Installation media boots into Live Android image 

– Installer frontend a special app that only exists in Live 
image 

 



SMBIOS Properties 

• Special case of install-time parameters for known devices 

• System Management BIOS (SMBIOS) specification 

• Microsoft requires OEMs to support this for certification, all 
Intel devices that can run Windows should have it 

• DMI sysfs 
– /sys/device/virtual/dmi/id 

– Unique modalias per device 

• Search for substrings in modalias for manufacturer and 
model information 

• /system/etc/dmi-machine.conf 
– Individual system property files in /system/etc/machine-props/ 

– Parameters must be known a priori, but can be updated OTA 

• Devices that aren’t supported instead configured by 
Installer questions 



Disk Layout Scalability 

• Disk information hardcoded in lots of places 
– recovery.fstab, vold.conf, init.rc or mountall fstab, OTA scripts, others… 

• Establish /dev/block/by-name symlinks so files are static 
– As opposed to /dev/block/sda5 (example) 
– /dev/block/by-name/system 

• Iago installer places partition names in GPT entries 
– Prefixed with randomly generated “install id” 
– Prevents issues with multiple Android installations on same device (Live image) 
– Modification to ueventd to create symlinks based on names passed in via block device 

uevents 

• Many shipping Android devices do something similar 
– Partition name stored in the GPT 
– Include hard-coded controller name in path for security reasons 
– parse_platform_block_device() in ueventd 
– Otherwise, possible to spoof partitions using specially crafted GPT in removable media 

• Advantages 
– Hardcoded files in build written once and never touched again 
– Physical disk configuration completely flexible, even span multiple disks 

• No Installer support yet, but could conceivably support things like LVM, SW RAID, etc. 

– Can install Android on removable media 
– But if security (user is enemy) is a concern don’t do this! 



Ethernet Connectivity 

• Desirable for a few reasons 
– Devices without WiFi 
– ADB/GDB over Ethernet for devices without USB OTG 
– Performance throughput 

• Configuration 
– Extended the Android Settings app 

• DHCP or Static IP configuration 
• Proxies 

– Status bar icon similar to WiFi 

• Integrated with Android ConnectivityManager 
– Switches lower priority networks off when higher priority connections are 

available 
– EthernetManager not exposed directly to apps 

• Apps just see it as a generic network connection like WiFi or 3G 

• Utility configuration 
– Use Ethernet as secondary network interface for debug 
– Allows Ethernet connectivity in alternate ramdisks 
– Also during bringup when UI isn’t yet working 

• https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-
android-ia 
 

https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia
https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-android-ia


Ethernet Screenshot 



Device Triggers 

• Sometimes need for more complicated processing on device 
insertion 

• Ueventd only has limited functionality 
– Creation of device nodes 
– Permissions on device nodes based on ueventd.rc 
– Automatic insertion of modules and their dependencies based on 

modalias/modules.dep 

• Extend ueventd.rc syntax to allow wildcards within the path 
(not just at end) 

• Extend init.rc syntax 
– Perform additional actions when a device is added or removed 
– Example: bring up network interface when USB Ethernet adapter 

is connected 

• Working with Google on acceptable upstream 
implementation 
– https://android-review.googlesource.com/#/c/40143/ 

 

 
 

https://android-review.googlesource.com/
https://android-review.googlesource.com/
https://android-review.googlesource.com/
https://android-review.googlesource.com/


Scalable HALs 

• Audio HAL 
– Extension of Nexus 7 Audio HAL 
– At boot time, probe attached audio codecs 
– Configure mixer controls appropriately 

• No standard set of names for mixer controls 
• Set of XML files for each codec vendor family 
• So far Realtek & Cirrus Logic (most common) 
• Can add new ones without modifying HAL code 

• Sensors 
– Check for industry-standard IIO Sensor Hub at first boot 
– Slightly time-consuming, cache the result for later boots 
– We expect most Win-8 class slates to have this hub 

• Camera HAL 
– Support various USB cameras using Video4Linux interfaces 
– Physical layout specified in ro.camera.* properties 

 



UEFI Secure Boot 

• Single secure boot solution for UEFI platforms 
– Some elements here still WIP and not on 01.org 

• Need to trust bootloader stages, kernel, ramdisk, 
modules, and all inputs 

• Linux kernel modules on /system signed with new 
modsign feature in Linux 3.7 
– Use static key checked into the build instead of throwaway 

key 
• Reduced size of OTA incremental images 
• Out-of-tree modules can be delivered as binaries 
• Fastboot won’t have to flash both /system and kernel 
• Development team doesn’t have any access to production key 

– All keys in repo are development test keys 
– sign_target_files_apks extended to additionally re-sign 

modules and replace public key in kernel with production 
key 
 



UEFI Secure Boot Diagram 
EFI Boot 

Manager 

UEFI Shim 

GummiBoot 
Windows Boot 

Manager 

Header 

bzImage 

Ramdisk 

Signature 

Header 

bzImage 

Ramdisk 

Signature 

Android Recovery 

Firmware 

EFI System Partition 

AOSP Boot Image Partitions 

… possibly others (Fastboot) 



UEFI Shim 

• Modified Red Hat UEFI Shim 
– Signed with the key stored in firmware, typically 

Microsoft key 

– Contains its own signature and key management logic 
from OpenSSL 

– Verifies next stage image is signed 

– Exports security services for use by later EFI stages 

– Loads next UEFI stage using PE/COFF link-loading to 
bypass FW security policy 

– Open source version has key onloading for adding own 
keys 

– Modification is to verify arbitrary blobs PE/COFF 
executables 

 



GummiBoot 

• Modified Gummiboot 
– Signed with key in UEFI Shim (not FW key!) 
– Supports loading standard Android boot image format 

• system/core/mkbootimg 

– AOSP boot image format slightly extended to include optional 
signature 

– Uses UEFI Shim security services to verify boot image and config 
files 

– Starts kernel directly using some efilinux code 
– Alternate boot target support 

• Interactive menu for eng builds 
• Check for ‘magic’ keys to load alternate targets like Recovery Console 
• Android Bootloader Control Block support for recovery console 

persistence 
– Re-launch Recovery Console with same parameters if power 

interrupted 
• LoaderEntryOneShot EFI variable set by kernel driver 

– For “adb reboot recovery” 
• Windows Boot Manager for Dual Boot installations 



Userspace Fastboot 

• Traditionally, Fastboot implemented in bootloader 
– Reference implementation in LK Bootloader 
– Need to re-implement with every bootloader change 

• Implemented as a tertiary boot target 
– Additional boot image with special ramdisk 
– Similar to Recovery Console 

• Plug-in architecture 
– Similar to Recovery Console plug-ins 
– Add platform-specific flashing commands 

• Update device firmware, baseband, BIOS, etc 

• Uses recovery.fstab to map device nodes 
• Full Android userspace is nice 

– Shell commands, libz, available 
– On-the-fly gzip decompression 
– Ethernet connectivity 

• However, with migration to UEFI, plan is to re-implement as UEFI 
application which can be baked into firmware 

– Google likes this better because it will be always available 



Future Work 

• Framework overlay scalability 
– config.xml, overlays, etc. 

– Cyanogenmod has some work in this space 

• Fastboot as EFI application 

• More Installer plug-ins 

• Integration of Sony DASH Dynamic Sensor HAL 
– https://github.com/sonyxperiadev/DASH 

• Multiple graphics driver support 
– Multiple hwcomposer, gralloc, EGL driver libs 

• Install-time App specification 

• We’re hiring! 


