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Android-IA on 01.org - Who We 
Are 

• https://01.org/android-ia/ 

• Part of the larger 01.org website maintained by Intel 
Open Source Technology Center 

• Independent Android community site dedicated to 
driving Android support and innovation on Intel 
Architecture 

• Binaries and source code available 
– Code for all the topics covered today is/will be available 

online 

• Ultimate objective of most of our IA enabling and 
innovation is upstream inclusion in Android Open 
Source Project (AOSP) 

• Join our mailing list! 
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Single Build Target 

Objective 
• Run Android at some baseline level of functionality on multiple devices 

with a single binary installation image 
• Ongoing process – every bit helps even if we can’t do it all 
Advantages 
• Reduce the number of hard-coded parameters in the Android board 

configuration files 
• Support many off-the-shelf devices, including ones we don’t know 

about 
• Reduce bring-up time on new platforms 
• Target a class of devices instead of a specific device 
• Lowers expertise required to bring up Android on a system 
Scalability May Not Be For Everyone 
• A single image may make it more difficult to optimize for a specific 

device without breaking something else 
• Requires testing on all devices with any change 

– As opposed to just the specific device being targeted 



Three Classes of Parameters 

• Build-time configuration 
– Much of Android config is currently done here 
– Image is highly tuned to specific destination hardware 

• Install-time configuration 
– Decisions made when software is installed 
– Permanent 

• Stored outside scope of software updates 
• Immutable 
• /factory/factory.prop 

– Scope limited to properties that are not auto-detectable or runtime immutable 
• Camera physical orientation 
• Graphics driver 
• LCD density (EDID-based config in future) 
• Disk partition layout 

– For auto-detectable properties 
• Run detection logic in the installer 
• Otherwise just interactively query the user 

• Runtime configuration 
– Automatically detected or runtime mutable parameters 
– Manual selection, i.e. Settings app 
– Android PackageManager imposes some constraints on what is mutable 



Automatic Kernel Module Loading 

• Modprobe-like library functions 
– insmod_by_dep() and rmmod_by_dep() added to libcutils 
– Traverse modules.dep dependency hierarchy to insert all needed dependencies 
– System-wide and local blacklists can be used to skip loading particular modules 
– rmmod_by_dep() won’t remove a dependency if used by something else 
– Uses modules.alias to map uevent modalias to the module name 

• Enhance ueventd 
– Many uevents may come in before /system is mounted, queue them 
– Deferred processing until /system is available 

• Checks every time there is an ‘add’ event 

• Additional init.rc commands 
– coldboot – trigger ueventd deferred module loading by triggering ‘add’ events in 

sysfs 
– probemod – improved ‘insmod’; inserts required dependencies 

• /sbin/modprobe 
– Drivers in kernel can request modules by launching a program 
– Default to /sbin/modprobe; thin wrapper around insmod_by_dep() 
– Not actually kernel.org GPL Modprobe 



Automatic Module Loading (cont.) 

• Loading appropriate WiFi Drivers 
• Audio codecs 
• USB peripherals 
• Camera Hardware, uvcvideo 
• Not everything can be auto-inserted yet 

– Currently building-in USB Ethernet and USB Serial drivers for 
alternate ramdisk targets 

• No /system available in Recovery Console 

– Sensor Hub drivers currently don’t probe available hardware 
– Modules that require parameters must be inserted via init.rc 

• No modules.conf (yet) 

• You need security too 
– MODSIGN in Linux 3.7 – more on this later 

• Plan is to upstream to AOSP soon 
• https://01.org/android-ia/blogs/jzhang80/2012/increasing-

android-device-scalability-automatic-kernel-module-loading 
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Flexible Disk Installer “Iago” 

• Not really applicable to handset/low-end tablet 
products 

• Replaces old bootable/diskinstaller 
– Buggy, not flexible, MBR with GRUB only 

• Use-cases 
– Install on Android on commodity hardware 

• Including devices not previously known 
• Intended for devices that boot from removable media 

– Dual/Multi boot with other Oses 
– Three boot modes 

• Automatic installer 
– Uses predefined configuration 

• Interactive installer 
– Installation questions to customize to user’s needs 

• Live Android session directly from the USB stick 



Flexible Disk Installer “Iago” 

• Design goals: 

– Lightweight integration into Android tree 

• Pulls in parted, ntfs-3g, efibootmgr 

• Parted eventually going away in favor of custom GPT 
library 

– Support for platform-specific plug-ins similar to 
Recovery/OTA system 

– Interactive disk partitioning 

– Dual/Multi Boot support 

– GPT/UEFI support (Legacy BIOS/MBR support dropped) 

 



Flexible Disk Installer “Iago” 

• Query user for configuration parameters 
– Install-time configuration parameters established here 

– Auto-detectable but immutable props have detection 
logic run in installer environment 

– Selections written to /factory/factory.prop, never 
touched by OTA or Factory Data Reset 

• Eventual support for Multi-Boot 
– Currently support dual boot with Windows 8 

– Ubuntu, Fedora, Tizen, multiple Android installs 

• Eventual support for a GUI 
– Installation media boots into Live Android image 

– Installer frontend a special app that only exists in Live 
image 

 



SMBIOS Properties 

• Special case of install-time parameters for known devices 

• System Management BIOS (SMBIOS) specification 

• Microsoft requires OEMs to support this for certification, all 
Intel devices that can run Windows should have it 

• DMI sysfs 
– /sys/device/virtual/dmi/id 

– Unique modalias per device 

• Search for substrings in modalias for manufacturer and 
model information 

• /system/etc/dmi-machine.conf 
– Individual system property files in /system/etc/machine-props/ 

– Parameters must be known a priori, but can be updated OTA 

• Devices that aren’t supported instead configured by 
Installer questions 



Disk Layout Scalability 

• Disk information hardcoded in lots of places 
– recovery.fstab, vold.conf, init.rc or mountall fstab, OTA scripts, others… 

• Establish /dev/block/by-name symlinks so files are static 
– As opposed to /dev/block/sda5 (example) 
– /dev/block/by-name/system 

• Iago installer places partition names in GPT entries 
– Prefixed with randomly generated “install id” 
– Prevents issues with multiple Android installations on same device (Live image) 
– Modification to ueventd to create symlinks based on names passed in via block device 

uevents 

• Many shipping Android devices do something similar 
– Partition name stored in the GPT 
– Include hard-coded controller name in path for security reasons 
– parse_platform_block_device() in ueventd 
– Otherwise, possible to spoof partitions using specially crafted GPT in removable media 

• Advantages 
– Hardcoded files in build written once and never touched again 
– Physical disk configuration completely flexible, even span multiple disks 

• No Installer support yet, but could conceivably support things like LVM, SW RAID, etc. 

– Can install Android on removable media 
– But if security (user is enemy) is a concern don’t do this! 



Ethernet Connectivity 

• Desirable for a few reasons 
– Devices without WiFi 
– ADB/GDB over Ethernet for devices without USB OTG 
– Performance throughput 

• Configuration 
– Extended the Android Settings app 

• DHCP or Static IP configuration 
• Proxies 

– Status bar icon similar to WiFi 

• Integrated with Android ConnectivityManager 
– Switches lower priority networks off when higher priority connections are 

available 
– EthernetManager not exposed directly to apps 

• Apps just see it as a generic network connection like WiFi or 3G 

• Utility configuration 
– Use Ethernet as secondary network interface for debug 
– Allows Ethernet connectivity in alternate ramdisks 
– Also during bringup when UI isn’t yet working 

• https://01.org/android-ia/blogs/mkgumbel/2013/ethernet-support-
android-ia 
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Ethernet Screenshot 



Device Triggers 

• Sometimes need for more complicated processing on device 
insertion 

• Ueventd only has limited functionality 
– Creation of device nodes 
– Permissions on device nodes based on ueventd.rc 
– Automatic insertion of modules and their dependencies based on 

modalias/modules.dep 

• Extend ueventd.rc syntax to allow wildcards within the path 
(not just at end) 

• Extend init.rc syntax 
– Perform additional actions when a device is added or removed 
– Example: bring up network interface when USB Ethernet adapter 

is connected 

• Working with Google on acceptable upstream 
implementation 
– https://android-review.googlesource.com/#/c/40143/ 
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Scalable HALs 

• Audio HAL 
– Extension of Nexus 7 Audio HAL 
– At boot time, probe attached audio codecs 
– Configure mixer controls appropriately 

• No standard set of names for mixer controls 
• Set of XML files for each codec vendor family 
• So far Realtek & Cirrus Logic (most common) 
• Can add new ones without modifying HAL code 

• Sensors 
– Check for industry-standard IIO Sensor Hub at first boot 
– Slightly time-consuming, cache the result for later boots 
– We expect most Win-8 class slates to have this hub 

• Camera HAL 
– Support various USB cameras using Video4Linux interfaces 
– Physical layout specified in ro.camera.* properties 

 



UEFI Secure Boot 

• Single secure boot solution for UEFI platforms 
– Some elements here still WIP and not on 01.org 

• Need to trust bootloader stages, kernel, ramdisk, 
modules, and all inputs 

• Linux kernel modules on /system signed with new 
modsign feature in Linux 3.7 
– Use static key checked into the build instead of throwaway 

key 
• Reduced size of OTA incremental images 
• Out-of-tree modules can be delivered as binaries 
• Fastboot won’t have to flash both /system and kernel 
• Development team doesn’t have any access to production key 

– All keys in repo are development test keys 
– sign_target_files_apks extended to additionally re-sign 

modules and replace public key in kernel with production 
key 
 



UEFI Secure Boot Diagram 
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UEFI Shim 

• Modified Red Hat UEFI Shim 
– Signed with the key stored in firmware, typically 

Microsoft key 

– Contains its own signature and key management logic 
from OpenSSL 

– Verifies next stage image is signed 

– Exports security services for use by later EFI stages 

– Loads next UEFI stage using PE/COFF link-loading to 
bypass FW security policy 

– Open source version has key onloading for adding own 
keys 

– Modification is to verify arbitrary blobs PE/COFF 
executables 

 



GummiBoot 

• Modified Gummiboot 
– Signed with key in UEFI Shim (not FW key!) 
– Supports loading standard Android boot image format 

• system/core/mkbootimg 

– AOSP boot image format slightly extended to include optional 
signature 

– Uses UEFI Shim security services to verify boot image and config 
files 

– Starts kernel directly using some efilinux code 
– Alternate boot target support 

• Interactive menu for eng builds 
• Check for ‘magic’ keys to load alternate targets like Recovery Console 
• Android Bootloader Control Block support for recovery console 

persistence 
– Re-launch Recovery Console with same parameters if power 

interrupted 
• LoaderEntryOneShot EFI variable set by kernel driver 

– For “adb reboot recovery” 
• Windows Boot Manager for Dual Boot installations 



Userspace Fastboot 

• Traditionally, Fastboot implemented in bootloader 
– Reference implementation in LK Bootloader 
– Need to re-implement with every bootloader change 

• Implemented as a tertiary boot target 
– Additional boot image with special ramdisk 
– Similar to Recovery Console 

• Plug-in architecture 
– Similar to Recovery Console plug-ins 
– Add platform-specific flashing commands 

• Update device firmware, baseband, BIOS, etc 

• Uses recovery.fstab to map device nodes 
• Full Android userspace is nice 

– Shell commands, libz, available 
– On-the-fly gzip decompression 
– Ethernet connectivity 

• However, with migration to UEFI, plan is to re-implement as UEFI 
application which can be baked into firmware 

– Google likes this better because it will be always available 



Future Work 

• Framework overlay scalability 
– config.xml, overlays, etc. 

– Cyanogenmod has some work in this space 

• Fastboot as EFI application 

• More Installer plug-ins 

• Integration of Sony DASH Dynamic Sensor HAL 
– https://github.com/sonyxperiadev/DASH 

• Multiple graphics driver support 
– Multiple hwcomposer, gralloc, EGL driver libs 

• Install-time App specification 

• We’re hiring! 


