
Bringing up Android on
your favorite X86
Workstation or VM

Ron Munitz
CTO
Nubo Software

ron@nubosoftware.com
ron@android-x86.org

Android Builders
Summit 2013

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Agenda

● What is a "ROM"?
● Examples of Android ROMs
● ROMs in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Introduction to ROM
Cooking

Android Builders
Summit 2013

 From Wiktionary, the free Dictionary:
 “ROM”:

● (electronics, computing) read-only memory

● (video games) A software image of read-only memory (as of a
game cartridge) used in emulation

● (medicine) Range of Motion

● (finance) Return on Margin

● (estimating and purchasing) Rough order of magnitude. An informal
cost or price estimate provided for planning and budgeting purposes
only, typically expected to be only 75% accurate

"ROM" - Definition

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

“ROM” - Definition (cont.)
From Wikipedia, the free Encyclopedia:
ROM, Rom, or rom is an abbreviation and name that may refer to:
In computers and mathematics (that's us!):
● Read-only memory, a type of storage media that is used in computers

and other electronic devices
● ROM image, a computer file which contains a copy of the data from a

read-only memory chip
● ROM (MUD), a popular MUD codebase
● Random oracle model, a mathematical abstraction used in cryptographic proofs
● ROM cartridge, a portable form of read-only memory
● RoM, Request of Maintainer (see Software maintainer)
● Rough order of magnitude estimate

As CyanogenMod educates us in their overview
of Modding:

“You can flash a ROM onto the ROM,
which isn't really ROM”

 http://wiki.cyanogenmod.com/wiki/Overview_of_Modding

Terminology check

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android ROM components
Traditional terminology – whatever lies on the read-only partitions of the
device's internal flash memory:
● Recovery Mode:

○ Recovery Image (kernel + initrd)
● Operational Mode:

○ Boot Image (kernel + initrd)
○ System Image

● The magical link between the two:
○ Misc

What is not a part of the ROM?
● User data: /data, /cache, /mnt/sdcard/...

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android ROM Storage Layout

Since Android is Linux at its core, we can examine its
storage layout via common Linux tools:
shell@android:/ $ df
Filesystem Size Used Free Blksize

/dev 487M 32K 487M 4096

/mnt/secure 487M 0K 487M 4096

/mnt/asec 487M 0K 487M 4096

/mnt/obb 487M 0K 487M 4096

/system 639M 464M 174M 4096

/cache 436M 7M 428M 4096

/data 5G 2G 3G 4096

/mnt/shell/emulated 5G 2G 3G 4096

shell@android:/ $ mount
rootfs / rootfs ro,relatime 0 0

tmpfs /dev tmpfs rw,nosuid,relatime,mode=755 0 0

devpts /dev/pts devpts rw,relatime,mode=600 0 0

proc /proc proc rw,relatime 0 0

sysfs /sys sysfs rw,relatime 0 0

debugfs /sys/kernel/debug debugfs rw,relatime 0 0

Output of mount continues in next slide

Android ROM Storage layout:
"Standard Linux"

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android ROM Storage layout:
"Standard Android"
none /acct cgroup rw,relatime,cpuacct 0 0

tmpfs /mnt/secure tmpfs rw,relatime,mode=700 0 0

tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0

tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 0

none /dev/cpuctl cgroup rw,relatime,cpu 0 0

/dev/block/platform/sdhci-tegra.3/by-name/APP /system ext4 ro,relatime,
user_xattr,acl,barrier=1,data=ordered 0 0

/dev/block/platform/sdhci-tegra.3/by-name/CAC /cache ext4 rw,nosuid,nodev,
noatime,errors=panic,user_xattr,acl,barrier=1,nomblk_io_submit,
data=ordered,discard 0 0

/dev/block/platform/sdhci-tegra.3/by-name/UDA /data ext4 rw,nosuid,nodev,
noatime,errors=panic,user_xattr,acl,barrier=1,nomblk_io_submit,
data=ordered,discard 0 0

/dev/fuse /mnt/shell/emulated fuse rw, nosuid, nodev, relatime,
user_id=1023,group_id=1023,default_permissions,allow_other 0 0

shell@android:/ $ cat /proc/partitions
major minor #blocks name

 179 0 7467008 mmcblk0

 179 1 12288 mmcblk0p1

 179 2 8192 mmcblk0p2

 179 3 665600 mmcblk0p3

 179 4 453632 mmcblk0p4

 179 5 512 mmcblk0p5

 179 6 10240 mmcblk0p6

 179 7 5120 mmcblk0p7

 179 8 512 mmcblk0p8

 179 9 6302720 mmcblk0p9

Android ROM Storage Layout

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

So, where is my stuff?!
shell@android:/ $ ls -l /dev/block/platform/sdhci-tegra.3/by-name/

lrwxrwxrwx root root 2013-02-06 03:54 APP -> /dev/block/mmcblk0p3

lrwxrwxrwx root root 2013-02-06 03:54 CAC -> /dev/block/mmcblk0p4

lrwxrwxrwx root root 2013-02-06 03:54 LNX -> /dev/block/mmcblk0p2

lrwxrwxrwx root root 2013-02-06 03:54 MDA -> /dev/block/mmcblk0p8

lrwxrwxrwx root root 2013-02-06 03:54 MSC -> /dev/block/mmcblk0p5

lrwxrwxrwx root root 2013-02-06 03:54 PER -> /dev/block/mmcblk0p7

lrwxrwxrwx root root 2013-02-06 03:54 SOS -> /dev/block/mmcblk0p1

lrwxrwxrwx root root 2013-02-06 03:54 UDA -> /dev/block/mmcblk0p9

lrwxrwxrwx root root 2013-02-06 03:54 USP -> /dev/block/mmcblk0p6

Legend: APP is system, SOS is recovery, UDA is for data...

For a couple of reasons:
● Backup
● Recovery
● Software updates
● Error checking
● Board design
● Curiosity
● ...

Why should we care about it?

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android Open Source Project
● “Semi-Open source”
● Maintained by Google
● Contributions accepted using “gerrit”
● Mostly Apache licensed
● Provides templates for building an Android system, including

bootloaders etc.
● Vendors derive their products for their hardware layout (BSP,

binaries, etc.)
● Provides the complete source code (but usually missing proprietary

binaries) for a bunch of supported devices (e.g. Galaxy Nexus,
Motorola Xoom, Nexus 4/7/10, Android Emulator)

●

●

● In a single line:
○ just do whatever they say in http://source.android.com

● In a bit more:
○ Set up a 64bit Linux development machine. Officially Supported:

■ Ubuntu 10.04 LTS (Lucid) for versions < JB 4.2.1
■ Ubuntu 12.04 LTS (Precise Pangolin) for versions >= JB 4.2.1

○ mkdir / cd / repo init / repo sync
○ . build/envsetup.sh
○ lunch <Your Config>
○ make # This will take a while... Make some coffee || Get` a good nap.
○ flash/boot/run/pray/debug/show off at xda-developers et al.

AOSP ROM building

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

A bit more about flashing
● When flashing to devices – make sure the bootloader is unlocked. For

“Google phones”:
○ adb reboot-bootloader
○ fastboot oem unlock
○ Confirm on device

Then you can flash all images using “fastboot -w flashall”,
or particular images using “fastboot flash -w <partition> <image>”

● Some tips on flashing custom builds:
○ Having trouble using “fastboot flash” due to mismatched broadband versions?
○ Try modifying device/<vendor>/<product>/board-info.txt
○ Before building, make sure you have the “binary-blobs”, under the vendor/

subtree (note the difference from device/)
■ Hint: proprietary-blobs.txt

● Get a kernel to start from – or make one
○ 3.4+ kernel are pretty much “Android-Ready”

● Checkout/config/make
○ Don't get too freaky – avoid breaking “Userspace” (a.

k.a “Android”)
● Replace prebuilt kernel with your generated bzImage
● Rebuild Android
● Pray/play/laugh/cry/show off on XDA-dev/Q&A on

android-kernel / android-porting / android-*

Building kernels

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Getting Kernel Sources
$ git clone https://android.googlesource.com/kernel/<target>.git

Some kernel targets hosted by the AOSP:

● Common - common kernel tree. Based on Linux 3.4+
● msm – Qualcomm msm (HTC Nexus One)
● Omap – TI's OMAP (Samsung Galaxy Nexus)
● Tegra – Nvidia's Tegra (Motorola Xoom)
● Goldfish - Android emulator (2.6.29)

● Well... Yes!
● A nice thing about Android – system and kernel are

reasonably decoupled
● “It's just an emulator” - and most of its consumers are only

interested in testing applications, so “don't fix it if it ain't
broken”

● The source for a stable X86 3.4 goldfish port can be found in
http://github.com/ronubo/goldfish-3.4
○ Use at your own risk

● Talk to me if you need a 3.5+/3.6+/3.7+ goldfish porting.
● TIP: ${ANDROID_BUILD_TOP}/external/qemu/distrib/build-kernel.sh

2.6.29?!?!?!

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

AOSP case study: Building a
Jelly Bean emulator

Mount points on standard Goldfish 2.6.29 kernel:
mount
rootfs / rootfs ro 0 0
tmpfs /dev tmpfs rw,nosuid,mode=755 0 0
devpts /dev/pts devpts rw,mode=600 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 0
/dev/block/mtdblock0 /system yaffs2 ro 0 0
/dev/block/mtdblock1 /data yaffs2 rw,nosuid,nodev 0 0
/dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
cat /proc/mtd
dev: size erasesize name
mtd0: 0b460000 00020000 "system"
mtd1: 04000000 00020000 "userdata"
mtd2: 04000000 00020000 "cache"
#Note: Yaffs2 is obsolete. On ICS and JB devices /system is mounted as
ext4.

Android emulator storage
(Goldfish kernel)

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Using the Android Emulator
● First and foremost: Build for X86 and use KVM!

○ Check capability with “kvm-ok”
○ Feature must be enabled in your computer's bios
○ cat /proc/cpuinfo and search for vmx/avm(intel VT/AMD-V)

● Use hardware keyboard
○ Much more comfortable then “touching” the soft keyboard
○ Although there are uses for that
○ Enable keyboard in external/qemu/android/avd/hardware-

properties.ini – and rebuild external/qemu
● Windows users: Use HAXM (Intel's HW Acceleration Manager)

● There are more emulation configurations which are supposed to be
supported by AOSP, but tend to be broken
○ Building for non Linux devices from Linux

■ lunch sdk-eng && make sdk_win

○ Building for virtual box and other virtual machines:
■ lunch vbox_x86-eng

■ make android_disk_vdi

■ Translate VDI image to your VM hard-drive format (e.g. qcow...)

● Motivation for using such configurations:
Development teams working with different Operating Systems, but
willing to use the same emulated platform

●

Additional X86 AOSP
configurations

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Adjusting AOSP build for
KVM / QEMU (a teaser)
● Motivation - fast linux bringup procedure

○ First, bring-up the target OS on a virtual machine
○ Verify basic functionality
○ Then adjust for a designated hardware

● How to do it?
○ Short answer - use emulator images with some

adjustments, mount ext4, set sdcard etc...
○ Pragmatic answer: In the next session

The short answer would be – whenever you can.
○ Great for application development

■ when used with KVM
○ Has no dependency on a particular hardware
○ Very easy to build
○ Integrates well with the AOSP tools
○ Relatively well documented

Overall – it is a good ROM.
 Most used ROM for a reason.

When to use the emulator

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android Projects

Various forks to the Android Open Source Project:
● AOSP (4.2.2+ upstream) – The root of all (good?)
● Android-X86 (4.0.4 stable, 4.2.1+ upstream)
● Android-IA (4.2.1+ upstream)
● Many other forks

○ CyanogenMod
○ Buildroid/AndroVM
○ And many others...
○ Not all are known or Open-Sourced

A custom, open source distribution spawned off
the AOSP
● Provides optimizations and support for over

40 different devices, along with binaries
● Builds routine similar to AOSP (note:

“brunch”)
● http://wiki.cyanogenmod.com/wiki/Main_Page

CyanogenMod (special guest star)

Android, X86, Google,
Intel and Android-X86

Android Builders
Summit 2013

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android and X86

X86 ROMs (by chronological order):
● Android-X86 (Debut date: 2009)

○ http://android-x86.org
● Emulator-x86 (Debut date: 2011)

○ http://source.android.com
● Android-IA (Debut date: 2012)

○ https://01.org/android-ia

The common reference, having the most recent version of
the Android platform (Userspace) versions.
Provides the QEMU based Android Emulator:
 + Works on any hosted OS
 + Supports multiple architectures
 - But slow on non X86 ones
 - Performs terribly if virtualized
 - Has no installer for X86 devices
 - Very old kernel
 +/- An emulator. For better and for worse.

AOSP

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android-X86
+ Developed by the open source community
+ Developer/Linux user friendly
+ Multi-Boot friendly
+ Generally supports many Intel and AMD devices
+/- But of course requires specific work on specific HW
+ VM friendly
+ Mature, Recognized and stable
 - Delays in new releases (You can help!)
 - Current version (4.2.1) still needs some work on important features
 such as Bluetooth, Camera etc.
 + The ICS 4.0.4 release is amazing - including running ARM apps

+ Installer to device
+ Relatively new versions of android and kernel
+ Works great on ivy-bridge devices
+ Integrated Ethernet Configuration Management
- Development for devices based on intel solutions only
- Very unfriendly to other OS's
- Not developer friendly – unless they make it such
- Community work can be better. But it is seems to be getting better
- Intel phones are not based on it (at the moment)
+ Made impressive progress in the last couple of months!

Android-IA

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android is Linux
● Android is Linux

○ Therefore the required minimum to run it would be:
■ A Kernel
■ A filesystem
■ A ramdisk/initrd... Whatever makes you happy with your kernel's

init/main.c's run_init_process() calls.
See http://lxr.linux.no/linux+v3.6.9/init/main.c

○ This means that we can achieve full functionality with
■ A kernel (+ramdisk)
■ A rootfs where Android system/ will be mounted (ROM)
■ Some place to read/write data

Android-IA is, of course, Linux as well.
However, it was designed to conform to Android OEM's partition layout,
and has no less than 9 partitions:

○ boot - flashed boot.img (kernel+ramdisk.img)
○ recovery - Recovery image
○ misc - shared storage between boot and recovery
○ system - flashed system.img - contents of the System partition
○ cache - cache partition
○ data - data partition
○ install - Installation definition
○ bootloader - A vfat partition containing android syslinux bootloader
○ fastboot - fastboot protocol (flashed droidboot.img)

Note: On android-ia-4.2.1.-r1, the bootable liveimg works with a single
partition. It still has its issues - but it is getting there.

Android-IA is Android

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android-X86 is Linux
● One partition with two directories

○ First directory – grub (bootloader)
○ Second directory – files of android (SRC)

■ kernel
■ initrd.img
■ ramdisk.img

○ system
○ data

● This simple structure makes it very easy to work and debug

Note: Also comes with a live CD/installer. Very convenient.

●

● Start bootloader
● The bootloader starts the combined kernel +

ramdisk image (boot.img flashed to /boot)
● At the end of kernel initialization Android's

/init runs from ramdisk
● File systems are mounted the Android way –

using fstab.common that calls from init.
<target>.rc

Android-IA boot process

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Android-X86 boot process

● Start bootloader (GRUB)
● bootloader starts kernel + initrd (minimal linux) + kernel

command line
● At the end of kernel initialization

○ run the /init script from initrd.img
○ load some modules, etc.
○ At the end change root to the Android file system

● Run the /init binary from ramdisk.img
○ Which parses init.rc, and starts talking “Android-ish”

It depends what you need:
○ Developer options?
○ Debugging the init process?
○ Support for Hardware?
○ Support for OTA?
○ Licensing?
○ Participating in project direction?
○ Upstream features?
○ ...

There is no Black and White.

■

Which one is better?

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

An hybrid approach
● Use Android-X86 installer system
● And put your desired android files (matching

kernel/ramdisk/system) in the same partition.
● Use the Android-X86 chroot mechanism

○ Critics: Does redundant stuff
○ But that's just a hack anyway – devise specific solutions for

specific problems
● This way, we can multiple boot various projects:

○ Android-IA
○ AOSP
○ Any other OS...

● Repartition existing Linux partition (Don't do that...)
● Install Android-X86
● Add entries to GRUB
● Reboot to Android-X86 debug mode
● Copy Android-IA files from a pendrive or over SCP

○ For the former: cp /mnt/USB/A-IA/ /mnt && sync
○ /mnt is the root of Android-X86 installed partition

(e.g. (hd0,1)/...
● Update GRUB entries and update GRUB
● Voila :-)
● Less simplified procedure: Debug GRUB... :-(

** Note: Replace Android-IA with AOSP to boot AOSP built files
(system.img / kernel / ramdisk.img) on your target device.

■

Multi-boot recipe with
legacy GRUB (simplified)

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Multi-boot recipe using
GRUB2

● Repartition existing Linux partition (Don't do that...)
● Create a mount point for your multi-booting android

○ Can make a partition per distribution, it doesn't really matter.
○ For this example let's assume all Android distributions will co exist on the same partition,

and that it is mounted to /media/Android-x86
● Build your images

○ AOSP: Discussed before
○ Android-x86: . build/envsetup.sh && lunch x86 && make iso_img
○ Android-IA:

■ . build/envsetup.sh && lunch ivb && make allimages # liveimg for a live CD
■ . build/envsetup.sh && lunch bigcore && make allimages # liveimg for a live CD

● Create directories for your projects (e.g. jb-x86, A-IA, AOSP) under your mount point (e.g.
/media/Android-x86)

● From Android-X86's out/product/target: Copy initrd.img to all projects.
○ Can of course only copy ramdisk to one location.

● From all projects – copy kernel, ramdisk.img, system/ and data/ to to the corresponding
directory under your mount point.

● Add entries to GRUB and update grub.
● # e.g. sudo vi /etc/grub.d/40_custom && update-grub

●

●

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda5 451656948 394848292 34199920 93% /
udev 1954628 4 1954624 1% /dev
tmpfs 785388 1072 784316 1% /run
none 5120 0 5120 0% /run/lock
none 1963460 2628 1960832 1% /run/shm
/dev/sda1 15481360 5165416 9529464 36% /media/Android-
x86

Multi-boot recipe with
GRUB2 - A numerical example

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

A numerical example (cont.)-
/etc/grub.d/40_custom
JB-X86
menuentry 'jb-x86' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
echo 'Loading Android-X86'
linux /jb-x86/kernel quiet androidboot.hardware=android_x86 video=-16 SRC=/jb-x86
initrd /jb-x86/initrd.img
}

android-IA

menuentry 'Android-IA' --class ubuntu --class gnu-linux --class gnu --
class os {

recordfail

insmod gzio

insmod part_msdos

insmod ext2

set root='(hd0,msdos1)'

echo 'Loading Android-IA'

linux /A-IA/kernel console=ttyS0 pci=noearly console=tty0 loglevel=8
androidboot.hardware=ivb SRC=/A-IA

initrd /A-IA/initrd.img

}

A numerical example (cont.) -
/etc/grub.d/40_custom

● What is a "ROM"
● Examples of Android ROMs
● ROM in the Android developer world
● Building your first ROM out of the AOSP
● Android and X86

Coming up next...

● In this session:
○ We have listed various ways to build ROMs for

■ AOSP devices
■ AOSP emulator(-X86)
■ Android-X86
■ Android-IA

○ We have also discussed multi booting several
configurations using the Android-X86 build system

● In the next session (right after the break!), we will see
how to create and modify those projects for easy
customizable X86 developer friendly targets!

● The AOSP is hosted at http://source.android.com
● The Android-x86.org project is hosted at http://Android-X86.org
● The Android-IA project is hosted at https://01.org/android-ia
● The presentation is available at http://events.linuxfoundation.

org/images/stories/slides/abs2013_munitz.pdf
● Device trees shown in the next session will be updated at

https://github.com/ronubo/abs2013_aosp_kvm
● There is some more relevant material in https://github.com/ronubo/
● Updates and relevant information will be posted at

https://plus.google.com/100590449141172132889
● You are welcome to contact me at:

○ ron@nubosoftware.com
○ ron@android-x86.org (preferable for topics related to the lecture)
○ Google+ / LinkedIn / Owl (;-))

References

http://source.android.com
http://android-x86.org
https://01.org/android-ia
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
https://github.com/ronubo/abs2013_aosp_kvm
https://github.com/ronubo/abs2013_aosp_kvm
https://github.com/ronubo/
https://plus.google.com/100590449141172132889
https://plus.google.com/100590449141172132889

Thank You
Android Builders
Summit 2013

