
Yaminabe Revisited

A Case Study for Linux Variants of Consumer Electronic
Devices

Rainer Koschke, University of Bremen & Armijn Hemel
Tjaldur Software Governance Solutions

November 5, 2012

The authors

The original Yaminabe project

The Yaminabe research project was presented at LinuxCon Europe
2011 where Tsugikazu Shibata said the following:

I We expect there is a lot of non-upstream code in each
industry product. However, is that true?

I For what part of the kernel, how many lines of codes and why?

I If we do not know anything, we are not be able to support
them.

I So, we need some investigation.

Yaminabe scope

Yaminabe conducted a study of 15 “Gingerbread” smartphone
from:

I HTC (12 devices)

I LG (1 device)

I Motorola (1 device)

I Samsung (1 device)

because of easy access to source code, a real “Gingerbread” kernel
(instead of “Froyo” kernel with “Gingerbread” userland) and
market share.

Due to sheer volume there will be quite a few HTC specific results.

Implementation of Yaminabe

1. create a database with checksums of files from many kernels
from kernel.org and the Android project (193 in total).
This includes kernels later than 2.6.35 because of backporting
and forwardporting of patches.

2. for each handset kernel remove all files that can be found in
any of the upstream kernels

3. for each file left determine if any of the other handset kernels
has a file with the exact same name and different checksum

The result is a list of files that have the same name, are different,
which can’t be found in an upstream kernel and which are in at
least two different devices, so likely to be duplicate effort!

Results of Yaminabe

I each kernel has about 5% to 10% files that are different from
upstream (except the Motorola device: 0%)

I there was plenty of duplicate effort. Mostly these were
expected changes (driver code, board specific code), but also
quite a few changes in the core kernel.

The Yaminabe project gave enough reasons to start the “Long
Term Support Initiative”.

Drawbacks of the Yaminabe project

Yaminabe has a strong emphasis on checksums, not on actual
differences. This is very fast, but it treats every change (including
whitespace change) as equally important.

But not every change is equally important! Changed code is more
important than whitespace changes (this is not Python!) or
changed comments.

We need something more fine grained.

Introducing Yaminabe 2

Yaminabe 2 started at Dagstuhl Seminar 12071 in Germany
(“Software Clone Management Towards Industrial Application”)
where prof. Rainer Koschke and I discussed using code clone
detection for large-scale variance analysis.

In classic clone detection the goal is to discover copies of code.

Here not the clones themselves, but the differences are relevant.

Differences, especially duplicated work, could indicate cloning at a
higher level, namely cloning of work effort. To relate non-identical
yet similar files to each other we use clone detection.

Yaminabe 2 as a code clone detection problem

We combined the original Yaminabe approach with clone
detection. Yaminabe acts as a “filter” to get rid of “uninteresting”
files and shrink the problem space significantly.

Using a code clone detector from Axivion
(http://www.axivion.com/) called “codematches” the
remaining files were researched for similarity.

Results were presented at Working Conference on Reverse
Engineering (WCRE) 2012.

http://www.axivion.com/

Tokens & similarity

To compare the files they are first tokenized, where some
information is discarded:

I whitespace

I comments

I identifier names (rewritten to generic names)

I values of literals

I and so on

then the tokens are hashed.

In short: it abstracts from the concrete names of identifiers and
values of literals.

If two files have the same hash value, they are token-type identical,
or short: t-identical.

Two t-identical files

File f1

1 i n t f oo (i n t a , i n t i){
2 whi le (i > 0) {
3 a = a ∗ i ;
4 i ++;
5 }
6 re tu rn a ;
7 }

File f2

1 i n t f oo (i n t x , i n t i){
2 whi le (i > 0) {
3 x = x ∗ i ;
4 i ++;
5 }
6 re tu rn x ;
7 }

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2

tsim(f1, f2) =
|{t|t ∈ f1 ∧ t ∈ clone(f1, f2)}|

|f1|

=
34

40

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2

tsim(f1, f2) =
|{t|t ∈ f1 ∧ t ∈ clone(f1, f2)}|

|f1|
=

34

40

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2 x x v y a b b x z v

vyxyvzxyxx

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2 x x v y a b b x z v

vyxyvzxyxx

psim(f1, f2) =
|parameters(f1) ∩ parameters(f2)|
|parameters(f1) ∪ parameters(f2)|

=
|{x , y , z , v}|
|{a, b, x , y , z , v}|

File Similarity

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ... 45... 44

40... 39

A B C D

A B CD

f1

f2 x x v y a b b x z v

vyxyvzxyxx

psim(f1, f2) =
|parameters(f1) ∩ parameters(f2)|
|parameters(f1) ∪ parameters(f2)|

=
|{x , y , z , v}|
|{a, b, x , y , z , v}|

Similarity Criterion

(tsim(f1, f2) ≥ 0.7 ∨ tsim(f2, f1) ≥ 0.7) ∧ psim(f1, f2) ≥ 0.75

Top-14 files with highest number of variants

path modified similar

drivers/mmc/core/core.c 12 4
drivers/usb/gadget/android.c 12 1
drivers/usb/gadget/composite.c 12 2
drivers/mmc/card/block.c 11 4
drivers/usb/gadget/f mass storage.c 11 2
drivers/mmc/core/mmc.c 10 9
drivers/mmc/host/msm sdcc.c 10 8
include/linux/mmc/host.h 10 10
arch/arm/mach-msm/devices htc.c 9 0
drivers/cpufreq/cpufreq ondemand.c 9 8
drivers/mmc/host/msm sdcc.h 9 8
drivers/net/wireless/bcm4329 204/wl iw.c 9 1
drivers/video/msm/msm fb.c 9 1
kernel/power/wakelock.c 9 1

Top-14 files with highest number of variants (resorted)

path modified similar

arch/arm/mach-msm/devices htc.c 9 0
drivers/usb/gadget/android.c 12 1
drivers/video/msm/msm fb.c 9 1
drivers/net/wireless/bcm4329 204/wl iw.c 9 1
kernel/power/wakelock.c 9 1
drivers/usb/gadget/composite.c 12 2
drivers/usb/gadget/f mass storage.c 11 2
drivers/mmc/core/core.c 12 4
drivers/mmc/card/block.c 11 4
drivers/mmc/host/msm sdcc.c 10 8
drivers/cpufreq/cpufreq ondemand.c 9 8
drivers/mmc/host/msm sdcc.h 9 8
drivers/mmc/core/mmc.c 10 9
include/linux/mmc/host.h 10 10

Most-Varied Subsystems

I MultiMediaCard (MMC)

I USB gadget driver

I Touchscreen input drivers

I Others: limited differences in other input drivers, memory
management, YAFFS2, network drivers

Missed Defect Correction

Droid Incredible 2

other HTC

devices except

2010/Oct/11

bug−fix patch

kernel 2.6.36

2011/Mar/25

HTC Desire S

applied

Droid Incredible 2

other change to

t

2011/Jul/20

Future research (1)

Yaminabe 2 gave much more fine grained results, but it is not
enough:

I same criteria used for all parts of the kernel: for some
subsystems (like the core kernel) changes are much more
significant than for other parts. What are good thresholds?

I “dead code” (code that might have been changed, but is not
used in the final binary and just left to bitrot) is not removed.
Changes that are irrelevant might be reported.

Future research (2)

Other open research questions are:

I How much have vendors improved? Is more code being
upstreamed?

I Are there any vendor specific patches that are ported between
generations of devices that are not upstreamed?

Conclusions

I many variances introduced by handset manufacturers

I some expected (handset specifics), some unexpected (core
kernel)

I combination of file hashing and zooming in with inter-system
clone detection finds:

I highly dissimilar/variant path-identical files: integration
difficulties

I highly similar path-identical files: local patches or missed
patches

I handset manufacturers fail(ed) syncing changes in the
mainline

I better communication and collaboration among kernel and
headset developers needed

Questions?

