
© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 1Cisco Confidential© 2012 Cisco and/or its affiliates. All rights reserved. 1

Intricacies of a MIPS Backtrace Implementation

David VomLehn
Technical Leader

16 Feb 2012

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 2

Stack backtracing and me
Since the beginning, MIPS has really needed a solid binary-only (no symbol table)
backtrace library.

In ancient times (early 1990s), porting the C++ thread library to MIPS required a partial
stack backtrace implementation, so I wrote one.

As the Technical Committee Chair for the MIPS ABI group in 1995, I drafted a backtrace
API for the MIPS ABI Black Book. Unfortunately, that revision of the Black Book has
become lost in the mists of time and we’re all using an old version.

With over a million Linux-based cable settop boxes deployed and strict limits on down-
time, Cisco relies on the ability to remotely diagnose problems. When I realized much
more could be done than existing stack backtracing code was doing, I had to do it. [See
DSM-IV, Obsessive-Compulsive Disorder]

Today we will discuss backtracing without symbol tables…

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 3

Naked Stack
Backtracing!

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 4

What is stack backtracing?
Stack backtracing is an iterative process of transforming a state associated with a called
function into a state associated with the calling function, until a terminating condition is
reached

The state consists of:
A subset of processor registers--always includes program counter & stack pointer

A subset of the stack

Possibly other things, as we will see

Terminating conditions may be:
Detection that the program counter is within a “root” function function

A NULL program counter or stack pointer value

Others as appropriate to the environment

NOTE: in this presentation all stacks are shown with high addresses at the top, low addresses
at the bottom

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 5

Backtracing one frame on an x86 processor
Function prologue: p1: push ebp

p2: move ebp, esp

Function return: r1: move esp, ebp
r2: pop ebp
r3: ret

State:
Registers ebp, esp, eip

Stack

Backtrace sequence [offset = sizeof(unsigned long)]:
If next instruction to be executed is not at p1

ESP = EBP

If next instruction to be executed is not at p2, r2, or r3

EBP = memory[ESP + offset], ESP = ESP + offset

EIP = memory[ESP + offset], ESP = ESP + offset

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 6

How is MIPS different?
There is usually no frame pointer

If there is a frame pointer, it can be in any of the “saved” registers s0-s8.

Once a frame pointer is established, the stack pointer can be modified for things like alloca()

The called function will store saved registers before using it, but since it does not know whether the caller is
using a saved register as a frame pointers. Thus, frame pointers are not stored at any particular offset in the
stack frame

The return address is placed in the ra register when a call is done (using JAL/JALR
opcodes)

Leaf functions, i.e. functions that do not call any functions, keep the return address in ra

Non-leaf functions can store the return address at any offset within the stack frame

Stack frame allocated by subtracting the frame size from sp register, deallocated by adding
the same value to the sp register

Leaf functions allocate no stack frames if not needed

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 7

Why is MIPS different?
The MIPS calling conventions allow:

Increased performance

Fewer constraints on the compiler

Reduced memory

Avoiding a dedicated frame pointer:
Frees a register to be used instead of memory

Storing the return address in a register:
Avoids the store to and restore from memory for leaf functions

Decrementing/incrementing the stack pointer instead of pushing/popping a frame pointer:
Avoids memory store and restore for a frame pointer

Avoiding unneeded stack frame allocations eliminates instructions needed to do so

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 8

MIPS prologue/return code
Function prologue: jr ra ; End of previous function

<branch delay slot instruction>
p1: addiu sp, sp, -<frame size>
p3: sw ra, <ra_offset>(sp) ; If not a leaf function

<store any saved registers that will be used on the stack>
p2: move s<n>, sp ; If using frame pointer

Function return: r1: move sp, s<n> ; If using frame pointer
<restore any saved registers stored on the stack>

r2: lw ra, <ra_offset>(sp) ; If not a leaf function
r3: addiu sp, sp, <frame size>
r4: jr ra

Notes:
Unlike most processors, there are many possible variants of function prologue and return code sequences
and ordering may vary

Function prologue is all in the first basic block

ADDIU SP, SP, <frame size> is normally placed in the JR RA branch delay slot

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 9

Backtracing one frame on MIPS processors
State:

Registers s0-s7, s8/fp, sp, ra, pc

Stack

Program text

Other: frame_size, fp_reg_no, is_ra_saved, ra_offset, is_sn_saved[] (true if sn saved), sn_offset[]

Backtrace sequence:
SP = REGS[fp_reg_no] + frame_size

if (is_ra_saved)

RA = memory[SP + ra_offset]

for i in s0, s1, s2, s3, s4, s5, s6, s7, s8/fp, gp

if (is_sn_saved[i])

REGS[i] = memory[SP + sn_offset[i]]

Encompasses function prologue and return code, but...how to get all those other goodies?

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 10

Getting the rest of MIPS backtracing state
The basic rules for backtracing a MIPS o32 ABI executable were set out in the 1996 MIPS ABI
Black Book (www.sco.com/developers/devspecs/mipsabi.pdf, and others) but it does have some
shortcomings:

Only focused on user space

Did not handle signals (or exceptions)

Not concerned with function prologues or returns

Real gcc code can exit in the middle of a function, without a JR RA to mark the end of the function

Other optimizations, such as tail recursion, may fall outside the ABI rules

It is based heavily on code analysis

Ultimately must rely on heuristics

Breaks code down into basic blocks:
Code entered at the top with one exit at the bottom

Note: this differs in detail from compiler-related usages of this term

http://www.sco.com/developers/devspecs/mipsabi.pdf

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 11

See MIPS Run Linux, Second
Edition, Dominic Sweetman

“Some debuggers are quite heroic
and will even interpret the first few
instructions of a function to find
how large the stack frame is and
to located the stored return
address.”

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 12

ABI-based code analysis
Scan backwards from the current location:

Terminate when one of the following is found:

A stack pointer decrement, which will be the beginning of the current function

A JR RA instruction, which will be the end of the previous function

If a MOVE R<n>, SP (actually, ADDU R<n>, SP, R0) is found:

Scan forward to find the JR RA that terminates the function

Scan backwards from there looking for MOVE SP, R<m> (actually ADDU SP, R<m>, R0), or the beginning
of the last basic block

If MOVE SP, R<m> was found and the previous n equals m, set fp_reg_no = n

If the outermost scan terminated with JR RA:
No stack frame was allocated (frame_size = 0, fp_reg_no = 29)

No saved registered were stored

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 13

ABI=based code analysis (con’t)
If the last examined instruction was a stack pointer decrement in the first basic block, this
is the stack frame allocation:

Set frame_size = value of stack pointer decrement

Scan through the first basic block:
For each instruction storing one of s0-s7, s8/fp, gp relative to the frame pointer (where the stack pointer
serves as the frame pointer if none is otherwise used):

Set is_sn_saved[register number] = true

Set sn_offset[register number] = offset in instruction

If ra is stored relative to the famer pointer (or stack pointer, if no frame pointer):

Set is_ra_saved = true

Set ra_offset = offset in instruction

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 14

Bounds-based code analysis
If function bounds are available, can use information to increase robustness

Use actual function start instead of using stack frame allocation or JR RA

Use actual function end instead of JR RA

If KALLSYMS is enabled, can use kallsyms_lookup() to get function start and size

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 15

Making branch delay slots disappear
To handle branch delay slots, one could use:
for(;;) {

rc = fetch_op(pc, &op);
if (rc != 0)
return rc;
if (is_basic_block_end(op))
break;
process_op(op);
pc += 1;

}
rc = fetch_op(pc, &op);
if (rc != 0)

return rc;

Instructions in branch delay slots are properly part of the basic block, so use:
for(;;) {

rc = fetch_op(pc, &op);
if (rc != 0)
return rc;
if (is_basic_block_end(op))
break;
process_op(op);
pc = pc_inc(pc);

}

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 16

Layering on simple stack backtrace
Simple backtrace does one frame.

Looping and adding appropriate termination conditions give lots of functionality

But, wait! There’s more…
Backtracing over signal frames

Backtracing over processor exceptions (which, on MIPS, includes interrupts)

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 17

Why backtrace over signals and exceptions?
Wouldn't be necessary if all backtracing initiated from signal/exception handlers, but...

Failing function frame

Signal/exception
frame

Handler function 1

Panicking handler
function

← Want to know information from here

← So we can't stop here

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 18

Signal Frames
Detected by matching signal trampoline instruction sequence:
li v0,<value>
syscall

This is in the VSDO (virtual dynamically-linked shared object)

Once this has been detected, retrieving the frame’s register values is simply a matter of
pulling them off the stack, relative to the stack pointer

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 19

Exception frames
Detected by program counter within exception handling code

During exception processing, registers are gradually saved within a pt_regs structure by
functions like SAVE_SOME, SAVE_ALL, etc.

Uses tables to indicate whether registers values should be taken from the pt_regs
structure or the entry registers to the stack backtracing code. Very tedious.

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 20

Heuristics
Presently rely on two heuristics:

If not stack frame deallocation found, assume the function doesn’t return

If no return found, use s8 as a potential frame pointer register

Considering heuristic to handle returns from middle of function in ABI backtrace

Other heuristics might help in other places

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 21

Present usage
Earlier revision of code is deployed in all Linux-based cable settop boxes

This stack backtrace used for all kernel backtracing
Frame pointer value is available and could be printed to assist in making sense of stack dump

Also used to backtrace current task, which is stripped, from kernel
Task memory map available from /proc

Use memory map in conjunction with addr2line and unstripped executable and libraries to print symbolic
location

User space diagnostics code uses older backtrace, intention is to replace with this code

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 22

Current status
Latest submission to linux-mips mailing list:

http://comments.gmane.org/gmane.linux.ports.mips.general/31680

Code works well, but Ralf Bachle, MIPS maintainer, doesn’t love a code based approach
(and who likes doing all this work?)

Ralf has several requests
Support Cavium bbit0 instructions

Create exception handle code table automatically by inserting marks instead of a separate table

Improve heuristic for missing JR RA in ABI-based code

Other clean-up

Code undergoing revision for resubmission

http://comments.gmane.org/gmane.linux.ports.mips.general/31680

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 23

The future…
Sure would be nice to dispense with code analysis, but…

Symbol tables (derived from DWARF symbol table) are big!

Could there be a nice hash algorithm compactly mapping function addresses to tables of frame pointer
register number, stack frame size, etc., to be computed for each build?

Support other ABIs: n32, n64
Probably not too difficult

Probably want to support multiple ABIs simultaneously

MicroMIPS support:
Need to update instruction decoding, which should be straight-forward

Need to track the mode

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 24

Thank you.

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 25Cisco Confidential© 2012 Cisco and/or its affiliates. All rights reserved. 25

Supporting Inline Material

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 26

SYSTEM V APPLICATION BINARY INTERFACE: MIPS RISC Processor Supplement 3rd Edition
The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA

Stack Backtracing

There are standard called function rules for functions that allocate a stack frame and
because the operating system kernel initializes the return address register $31 to zero
when starting a user program it is possible to trace back through any arbitrarily nested
function calls. The following algorithm, which takes the set of general registers plus the
program counter as input, produces the values the registers had at the most recent
function call. Of course, only the saved registers plus gp, sp, ra, and pc can be
reconstructed.

§ Scan each instruction starting at the current program counter, going back- wards. The
compiler and linker must guarantee that a jump register to re- turn address instruction
will always precede each text section.

http://www.sco.com/developers/devspecs/mipsabi.pdf

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 27

MIPS ABI (2 of 4)
§ If the instruction is of the form “move $r, sp” or “addu $r, $sp, $0, then the register $r may be a frame

pointer. The algorithm remembers the current instruction so it can continue its backward scan.
Then, it scans forward until it sees the “jr ra” instruction that marks the end of the current function.

Next, it scans backwards searching for an instruction of the form ”move sp, $r” or “addu $sp, $r, $0”.
This scan terminates when such an instruction is found or the branch or jump instruction that marks
the beginning of the last basic block.

If a move or addu instruction of the kind described above was found, remember the register number of
$r as the frame pointer. Otherwise, $r is not the frame pointer.

The algorithm should return to its original backwards scan starting with the instruction preceding the
one remembered above.

§ If the instruction is a stack pointer decrement, exit the scan.

§ If the instruction is a jump register to return address, exit the scan.

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 28

MIPS ABI (3 of 4)
§ If the last examined instruction is a jump register to the return address, it is the end of

the previous function and no stack frame has yet been allocated for the current function.
The address from which the current function was called is in the return address register
minus eight. The other save registers had their current values when this function was
called, so just return their current values.

§ The stack decrement instruction must occur in the first basic block of the function. The
amount of stack decrement is the size of the stack frame.

§ Examine each instruction at increasing program addresses. If any instruction is a store
of save registers $16-$23, $28, $30, or $31 through the frame pointer (or stack pointer if
no frame pointer was used), then record its value by reading from the stack frame.

§ Stop after examining the instruction in the first branch delay slot encountered. This
marks the end of the first basic block.

© 2012 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 29

MIPS ABI (4 of 4)
§ The frame pointer is the stack pointer value at the time the current function was called

(or the stack pointer if no frame pointer was used) plus the size of the stack frame.

§ The address from which the function is called is either the return address register value
minus eight or, if the return address was saved on the stack, the saved value minus
eight.

 1990-1996 The Santa Cruz Operation, Inc. All rights reserved.

	Slide 1
	Stack backtracing and me
	Slide 3
	What is stack backtracing?
	Backtracing one frame on an x86 processor
	How is MIPS different?
	Why is MIPS different?
	MIPS prologue/return code
	Backtracing one frame on MIPS processors
	Getting the rest of MIPS backtracing state
	Slide 11
	ABI-based code analysis
	ABI=based code analysis (con’t)
	Bounds-based code analysis
	Making branch delay slots disappear
	Layering on simple stack backtrace
	Why backtrace over signals and exceptions?
	Signal Frames
	Exception frames
	Heuristics
	Present usage
	Current status
	The future…
	Slide 24
	Slide 25
	Slide 26
	MIPS ABI (2 of 4)
	MIPS ABI (3 of 4)
	MIPS ABI (4 of 4)

