
PyTimechart practical 

Pierre Tardy 

Software Engineer - UMG 

ELC, Feb 2012 



 
About the author 

Intel Employee since 2009 

Working on Intel’s phone platforms 

• Meego 

• Android 

• Power Management 

• Tools (pytimechart, buildbot) 

• Open-Source expertise 

Formerly Freescale Employee 

DVBH, LTE (gpe, oe, poky, cairo) 

 

 

 2 



 
Agenda 

I will not rephrase the documentation, you can access it 
following this link: 

http://packages.python.org/pytimechart/index.html 

 

Goal is to present the tool using real-world traces. See 
what you can get, what you won’t get. 

 

1. PyTimechart Overview 

2. Audio Player usecase – Hunting the wakes 

3. Bootcharting Ubuntu – Filtering with pytimechart 

4. Modem driver traces - Hacking PyTimechart to decode your own traces 

 

 

 

3 

http://packages.python.org/pytimechart/index.html
http://packages.python.org/pytimechart/index.html
http://packages.python.org/pytimechart/index.html
http://packages.python.org/pytimechart/index.html


Questions? 

4 



PyTimechart 
Overview 

5 



 
PyTimechart Overview 

Ftrace/perf are linux kernel tracing system. 

• Very low overhead 

• Already a lot of tracepoints available 

• Can trace all function calls without kernel compile 

• Hard to dive into trace 

• Most people need visual representation or get lost 

PyTimechart aims to let you quickly find what you are 
looking for 

• Based on chaco, the browsing is very fast 

• Based on python, parsing is very simple 

6 



 
PyTimechart Overview 

One line per Process. Process in pytimechart can be: 

• An IRQ callback 

• A workqueue 

• A tasklet 

• A linux process, identified by pid, and comm 

• A power state (cpuidle, runtime_pm) 

Simple browsing 

• Zoom with mouse wheel 

• Select a part of the chart 

– Show time range 

– Processor share 

– Original trace as text 

7 



Audio Player usecase 
hunting the wakes 

8 



 
LowPower MP3 usecase 

Playing mp3 is easy. Playing your whole music library in one 
battery charge is much harder. 

Need to improve wake up count. Each time the cpu wakes up, energy 
is spent (cache, PLL, etc) 

Audio HW is generating IRQ when a new buffer is needed. This goes all the way 
through user space, where the mp3 decode is done. 

We are waiting for: 

• Audio IRQ 

• MP3Decode 

• Sleep 

• Audio IRQ 

• MP3Decode 

• Sleep 

• Etc. 

9 



 
LowPower MP3 usecase 

10 



 
LowPower MP3 usecase. Overview 

11 

Here are the irqs… 



 
LowPower MP3 usecase. Overview 

12 

Here are the irqs… 

Here are mp3 decodes 



 
4 IRQ for 1 MP3dec 

13 

First remark: mp3 decode happens every 4 
audio irq: 
Can we increase the audio HW buffersize and 
get less wake because of IRQ? 



 
LowPower MP3 usecase 

14 

A *lot* of stuff happens in between irqs. 
Very short processing, but each wake burns energy 
Need to kills the timers 



 
LowPower MP3 usecase 

15 

If we zoom a bit, we see 3 wake-ups. All of them show 
timer softirq 



 
LowPower MP3 usecase 

16 

If we zoom a bit, we see 3 wake-ups. All of them show 
timer softirq 

This one is not a wake, because at this time 
AudioTrackThread is still running. 
This is just a normal scheduler interrupt 



 
LowPower MP3 usecase 

17 

zoom on the first wake: 
We look for non kernel framework events 



 
LowPower MP3 usecase 

18 

max3110_read.  
Grep this function in the kernel 
Findout why this driver is polling 



 
LowPower MP3 usecase 

19 

Other wake 
Exercise: 
Who is the culprit? 



 
LowPower MP3 usecase 

20 

Do_dbs_timer? 
Kondemand? 
 
This is the cpufreq 
on demand 
governor. 
 
This timer is 
deferrable 



http://www.lesswatts.org/projects/tickless/deferrable.php 

http://www.lesswatts.org/projects/tickless/deferrable.php


 
LowPower MP3 usecase 

22 

Delayed_work_timer_fn ! 
 
1st learning: 
Use meaningful names for 
your functions. Even if it is 
static, better put the 
shortname of your driver in it. 
 
2nd learning: 
Grep, rootcause, fix. 
-> remove the timer 
completely 
->put it as deferrable so that 
it does not wake from idle 



Quick Demo! 

23 



Bootcharting Ubuntu 
filtering in pytimechart 

24 



 
Bootchart 

25 

Whats wrong here? 



 
Bootchart 

26 

Too much process! 
 
Until systemd is integrated in 
ubuntu, there are a lot of 
short lived process during 
boot ;-) 
 
Need to filter them to have 
something viewable 



 
Bootchart 

27 

Select-All 
Hide 
Filter-by-duration (100ms) 
Select-All 
Show 
 
We eventually hide all 
processes that live less that 
100ms 



 
Bootchart 

28 

Lots of process are spawn in 
parallel. 



 
Bootchart 

29 

Lots of process are spawn in 
parallel. 

When a process is needing 
cpu it is shown in light yellow. 



 
Bootchart 

30 

Lots of process are spawn in 
parallel. 

When a process is needing 
cpu it is shown in light yellow. 

Here we have a lot of blkid 
process spawn by udev 
scripts. 



 
Bootchart 

31 

Filtering more process… 



 
Bootchart 

32 

Filtering more process… 

There are some 
part were we 
sleep during 
boot… 



 
Hunting sleeps 

33 

Zoom to first sleep 

We wake-up 
because of ahci 



 
Hunting sleeps 

34 

Zoom to first sleep 

We wake-up 
because of ahci 

Probably disk scan 



 
Hunting sleeps 

35 

Zoom to first sleep 

We wake-up 
because of ahci 

Probably disk scan 

Could we initialize more drivers in 
parallel? 



http://lwn.net/Articles/314808/ 

Although this is far to be new stuff, we don’t see a 
lot of drivers using this, AFAIK. 

http://lwn.net/Articles/314808/


Disgression on red irqs 

37 

What does 
those IRQs in 
red means? 



Disgression on red irqs 

38 

IRQ handler 
that lasts more 
than 1ms 
Bad for RT 
latency! 



Modem driver traces 
Hacking PyTimechart to decode your own traces 

39 



Hacking PyTimechart to decode 
your own traces 

Pytimechart is written in python 

• Easy to decode its own tracepoints 

• Even if you don’t add tracepoints, you can take advantage of 
function tracing to make more sense of your traces 

The trace I took for this is a simple “receive SMS” trace 

• I want to see when the hsi driver is in receive mode 

• First, I trace hsi* and ffl* which are the low level, and protocol 
driver of our modem interface 

• I can see 4 interesting functions in the trace: 

– hsi_start_rx() 

– hsi_stop_rx() 

– ffl_start_rx() 

– ffl_stop_rx() 

40 



timechart/plugins/template.py 

41 

Provided for 
convenience as 
a good starting 
point. 
 
See doc for 
more detailed 
info 



timechart/plugins/hsi.py 

42 

sed s/template/hsi/g template.py > hsi.py 



timechart/plugins/hsi.py 

43 

sed s/template/hsi/g template.py > hsi.py 

I want that the start 
functions begins a 
process event 



timechart/plugins/hsi.py 

44 

sed s/template/hsi/g template.py > hsi.py 

I want that the start 
functions begins a 
process event 

and the stop function 
ends it 



timechart/plugins/hsi.py 

45 

sed s/template/hsi/g template.py > hsi.py 

I want that the start 
functions begins a 
process event 

and the stop function 
ends it 

I also add a wake 
event to see where I 
come from 



Results 

46 



Results Zoomed 

47 



Questions? 

48 



Thank You 

49 




