
  

What Android and Embedded 
Linux can learn from each other

Bernhard “Bero” Rosenkränzer
Android Engineer, Linaro

DRAFT



  

Common misconception

Android = Linux + Java



  

Android = Linux + Java



  

Android = Linux + ?

● Kernel patches:
● Binder IPC + remote method invocation
● Ashmem/pmem (shared memory system)
● Logger
● USB gadget driver
● Wakelocks
● OOM handling
● Alarm timers
● Paranoid Network Security
● Timed Output/Timed GPIO
● RAM_CONSOLE



  

Android = Linux + ?

● Userland:
● Bionic libc
● Graphics system: OpenGL ES, SKIA, SurfaceFlinger, gralloc
● Debugging tools (adb, …)
● Init
● Package manager (apk)
● Various libraries (many also commonly found in “normal” 

Embedded Linux)
● Build system
● Dalvik VM



  

 

Anything useful for 
Embedded Linux?



  

Binder IPC/remote method invocation

● By order of magnitudes faster than D-Bus
● More memory efficient (avoids copies where 

possible)
● Suitable for passing larger amounts of data (e. 

g. used by Android’s sound system)
● C and C++ interfaces available, no Java 

required
● Interesting alternative to D-Bus

outside the Android world



  

ashmem/pmem shared memory

● ashmem is similar to POSIX Shared Memory, 
but with a simpler API

● Can discard shared memory units under 
memory pressure

● pmem is similar to ashmem, but provides 
physically contiguous memory: can be shared 
between userspace and kernel (dsp, gpu, …)

● C API - no Java required.



  

Logger

● Write-path optimized logging device – to avoid 
logging taking too much overhead

● Normal read()/write() API with IOCTLs to 
change buffer size, flush logs, etc.

● No Java required



  

USB Gadget driver

● Android’s USB gadget driver allows mode 
switching – allowing the same device to be 
used as a USB storage device, network device 
and custom (adb) device without rebooting or 
switching kernel modules

● Implementation is not very clean (which is why 
this likely won’t make it into Linux soon), but 
works well.

● Obviously, no Java required



  

Wakelocks

● Locks that keep the machine from suspending 
until they’re released

● Simple C and sysfs based APIs available, no 
Java required

● It’s easy to “forget” about a wakelock and 
prevent the machine from ever suspending. 
There may be better options.

● Still useful if used right.



  

OOM Handling

● Android’s optional OOM (Out-of-memory) 
handler simply kills processes as available 
memory becomes low.

● Suitable for some types of device – what you 
want worst for other types of device

● Whether or not this behavior is wanted 
depends on a device’s purpose – not so much 
on whether it’s running Android
or traditional Linux



  

Alarm Timers

● Provides a simple interface (character device 
based – no Java required) for running a timer – 
even if the device is otherwise suspended.

● POSIX Alarm Timers – providing similar 
functionality with a different API – have made 
it into Linux 3.0, so Android Alarm Timers will 
likely lose significance. Use POSIX Alarm 
Timers if they get the job done.



  

Paranoid Network Security

● Allows restricting network functionalities by 
the group of the calling process:
● Can create RFCOMM, SCO or L2CAPP Bluetooth 

socket
● Can create a Bluetooth socket
● Can create IPv4 and IPv6 sockets
● Can create raw sockets
● Allow CAP_NET_ADMIN permissions



  

Timed Output/Timed GPIO

● Allows charging a GPIO pin and restoring it 
automatically after a specified timeout.
Can be useful for e. g. controlling a vibrator 
from user space



  

RAM_CONSOLE

● Allows saving the kernel’s printk() messages to 
a buffer in RAM that can be viewed in the next 
kernel invocation – making it a lot easier to 
work with kernel panics



  

Bionic libc

● Bionic is “yet another libc implementation”, 
alongside (e)glibc, uClibc, dietlibc, newlib, …

● Small (even smaller than uClibc), designed to 
work well with low-powered CPUs

● Good support for Linux specific features
● BSD licensed
● Some room for optimizations

left



  

Bionic libc, part 2

● Missing some standard libc functions, but 
depending on the rest of your stack, you may 
not need them – e. g. Bionic is missing white 
character support, but if you’re using e. g. Qt 
(QString, QChar) or ICU for your text 
processing needs, you won’t notice

● No binary compatibility with glibc – BUT binary 
compatibility with Android...



  

Graphics system

● Android’s graphics system and its main 
components OpenGL ES, Skia, gralloc, 
SurfaceFlinger can be an interesting alternative 
to X11 and Wayland even on “normal” Linux:
● Less overhead
● Designed for relatively modern GPUs
● Supported fairly well by hardware makers
● Accessible from C, C++, Java



  

Graphics system

● A Qt port to Android exists (Necessitas) – 
including an output plugin for the Android 
graphics system with hardware accelerated 
OpenGL ES support.
Using the Android graphics system for 
traditional Linux may be more feasible than 
most people are thinking.



  

Debugging tools

● “Normal” Linux has, for the most part, better, 
more mature debugging tools for most 
purposes, however, one thing deserves 
attention:
● “debuggerd” provides a nice way to log backtraces 

automatically when an application crashes. This 
could be useful functionality for “normal” Linux.



  

Init

● Many Linux distributions are currently trying to 
replace good old SysVInit with something 
better – Android is no exception. Its init 
replacement takes a flexible but quick to parse 
init.rc file describing startup.

● Due to lack of support for per-package init 
scripts not suitable for Desktop Linux without
extra work, but Android’s init
could be interesting to some
Embedded Linux devices.



  

 Let’s look at the 
other side: what can 
Android learn from 
Embedded Linux?



  

There is a world outside of Android

● And often, there’s more than one way to do 
things right. Android makes it very hard to 
integrate things not specifically written for it, 
and should make a better effort at opening up 
to:
● Applications using a pre-existing build system 

(cmake, autoconf, …) - see also Botao’s talk about 
build system integration!

● Programming languages other
than Java



  

Developer tools

● The first Android based notebooks have come 
out – and (short of “build it yourself”), there’s 
no compiler that can compile an application on 
the notebook to run on itself.

● The fact that Android decided against having 
an equivalent of /usr/include makes things 
worse – you have to pick the headers from the 
Android source tree or SDK.



  

Developer tools

● It doesn’t make too much sense to have 
development tools on your typical mobile 
phone, but it was foreseeable (and has 
happened now) that Android would move into 
bigger devices with proper keyboards etc.

● Numerous Linux developer tools would be nice 
to have (shameless plug: Linaro’s Android 
builds include busybox, strace
and more!)



  

Graphics system

● This works both ways – while there are reasons for a 
Linux developer to consider using Android’s Graphics 
system, it may also make sense to have a mostly-
Android system using X11 if, for example, network 
transparency is a major feature for the device being 
built, or if you’re stuck with a graphics chipset for which 
only an X11 driver exists

● Having the whole stack (Dalvik etc.) running
well on top of X11 would be
interesting for running Android
applications on Desktop Linux
as well...



  

Package management

● Android’s (and BSD’s) approach of keeping the 
entire source in one tree and building it all in 
one go can become very slow as the system 
grows

● Having binary packages (akin to rpm/deb) 
makes it easier to pull in another application 
quickly without having to rebuild

● Also practically forces the
concept of development packages
(badly needed on Android)



  

 

In an ideal world...



  

In an ideal world...

● There’s not much of a point in having two 
separate communities working separately.

● There’s no immediate need to be binary 
compatible (keep the different libcs for 
different purposes – and we won’t have binary 
compatibility between arm and x86 anyway) – 
but let’s aim at maximum source level 
compatibility



  

In an ideal world...

● Let’s build the best of both worlds – 
make good Android technologies 
available (and actually use them) on 
regular Linux without forcing its more 
questionable “features” on anyone.



  

 

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

